DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1

Abstract

The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P 3 to PI(4,5)P 2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gβγ subunits downstream of G protein–coupled receptor signaling and by PI(3,4,5)P 3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P 3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gβγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within themore » PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.« less

Authors:
 [1];  [1];  [1];  [1];  [2];  [2];  [1];  [3];  [1];  [3];  [1];  [4];  [2];  [1]
  1. Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia.
  2. Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, 3052 Victoria, Australia.
  3. Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia., Monash Proteomics & Metabolomics Facility, Monash University, Clayton, 3800 Victoria, Australia.
  4. Biomedicine Discovery Institute, Monash University, Clayton, 3800 Victoria, Australia., ARC Centre of Excellence in Advanced Molecular Imaging, Monash University, Clayton, 3800 Victoria, Australia.
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1781847
Resource Type:
Published Article
Journal Name:
Science Signaling
Additional Journal Information:
Journal Name: Science Signaling Journal Volume: 14 Journal Issue: 681; Journal ID: ISSN 1945-0877
Publisher:
American Association for the Advancement of Science (AAAS)
Country of Publication:
United States
Language:
English

Citation Formats

D’Andrea, Laura, Lucato, Christina M., Marquez, Elsa A., Chang, Yong-Gang, Civciristov, Srgjan, Mastos, Chantel, Lupton, Christopher J., Huang, Cheng, Elmlund, Hans, Schittenhelm, Ralf B., Mitchell, Christina A., Whisstock, James C., Halls, Michelle L., and Ellisdon, Andrew M. Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. United States: N. p., 2021. Web. doi:10.1126/scisignal.abc4078.
D’Andrea, Laura, Lucato, Christina M., Marquez, Elsa A., Chang, Yong-Gang, Civciristov, Srgjan, Mastos, Chantel, Lupton, Christopher J., Huang, Cheng, Elmlund, Hans, Schittenhelm, Ralf B., Mitchell, Christina A., Whisstock, James C., Halls, Michelle L., & Ellisdon, Andrew M. Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1. United States. https://doi.org/10.1126/scisignal.abc4078
D’Andrea, Laura, Lucato, Christina M., Marquez, Elsa A., Chang, Yong-Gang, Civciristov, Srgjan, Mastos, Chantel, Lupton, Christopher J., Huang, Cheng, Elmlund, Hans, Schittenhelm, Ralf B., Mitchell, Christina A., Whisstock, James C., Halls, Michelle L., and Ellisdon, Andrew M. Tue . "Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1". United States. https://doi.org/10.1126/scisignal.abc4078.
@article{osti_1781847,
title = {Structural analysis of the PTEN:P-Rex2 signaling complex reveals how cancer-associated mutations coordinate to hyperactivate Rac1},
author = {D’Andrea, Laura and Lucato, Christina M. and Marquez, Elsa A. and Chang, Yong-Gang and Civciristov, Srgjan and Mastos, Chantel and Lupton, Christopher J. and Huang, Cheng and Elmlund, Hans and Schittenhelm, Ralf B. and Mitchell, Christina A. and Whisstock, James C. and Halls, Michelle L. and Ellisdon, Andrew M.},
abstractNote = {The dual-specificity phosphatase PTEN functions as a tumor suppressor by hydrolyzing PI(3,4,5)P 3 to PI(4,5)P 2 to inhibit PI3K-AKT signaling and cellular proliferation. P-Rex2 is a guanine nucleotide exchange factor for Rho GTPases and can be activated by Gβγ subunits downstream of G protein–coupled receptor signaling and by PI(3,4,5)P 3 downstream of receptor tyrosine kinases. The PTEN:P-Rex2 complex is a commonly mutated signaling node in metastatic cancer. Assembly of the PTEN:P-Rex2 complex inhibits the activity of both proteins, and its dysregulation can drive PI3K-AKT signaling and cellular proliferation. Here, using cross-linking mass spectrometry and functional studies, we gained mechanistic insights into PTEN:P-Rex2 complex assembly and coinhibition. We found that PTEN was anchored to P-Rex2 by interactions between the PDZ-interacting motif in the PTEN C-terminal tail and the second PDZ domain of P-Rex2. This interaction bridged PTEN across the P-Rex2 surface, preventing PI(3,4,5)P 3 hydrolysis. Conversely, PTEN both allosterically promoted an autoinhibited conformation of P-Rex2 and blocked its binding to Gβγ. In addition, we observed that the PTEN-deactivating mutations and P-Rex2 truncations combined to drive Rac1 activation to a greater extent than did either single variant alone. These insights enabled us to propose a class of gain-of-function, cancer-associated mutations within the PTEN:P-Rex2 interface that uncouple PTEN from the inhibition of Rac1 signaling.},
doi = {10.1126/scisignal.abc4078},
journal = {Science Signaling},
number = 681,
volume = 14,
place = {United States},
year = {Tue May 04 00:00:00 EDT 2021},
month = {Tue May 04 00:00:00 EDT 2021}
}

Works referenced in this record:

Regulation of PTEN inhibition by the pleckstrin homology domain of P-REX2 during insulin signaling and glucose homeostasis
journal, December 2013

  • Hodakoski, C.; Hopkins, B. D.; Barrows, D.
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 1
  • DOI: 10.1073/pnas.1213773111

Somatic driver mutations in melanoma: Somatic Driver Mutations in Melanoma
journal, May 2017

  • Reddy, Bobby Y.; Miller, David M.; Tsao, Hensin
  • Cancer, Vol. 123, Issue S11
  • DOI: 10.1002/cncr.30593

Mechanism underlying selective regulation of G protein-gated inwardly rectifying potassium channels by the psychostimulant-sensitive sorting nexin 27
journal, March 2011

  • Balana, B.; Maslennikov, I.; Kwiatkowski, W.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 14
  • DOI: 10.1073/pnas.1018645108

Structural Mechanisms of PTEN Regulation
journal, October 2019


Landscape of somatic mutations in 560 breast cancer whole-genome sequences
journal, May 2016

  • Nik-Zainal, Serena; Davies, Helen; Staaf, Johan
  • Nature, Vol. 534, Issue 7605
  • DOI: 10.1038/nature17676

Genomic Classification of Cutaneous Melanoma
journal, June 2015


Paving the Rho in cancer metastasis: Rho GTPases and beyond
journal, March 2018


The PRIDE database and related tools and resources in 2019: improving support for quantification data
journal, November 2018

  • Perez-Riverol, Yasset; Csordas, Attila; Bai, Jingwen
  • Nucleic Acids Research, Vol. 47, Issue D1
  • DOI: 10.1093/nar/gky1106

Integrative clinical genomics of metastatic cancer
journal, August 2017

  • Robinson, Dan R.; Wu, Yi-Mi; Lonigro, Robert J.
  • Nature, Vol. 548, Issue 7667
  • DOI: 10.1038/nature23306

Identification of cross-linked peptides from complex samples
journal, July 2012

  • Yang, Bing; Wu, Yan-Jie; Zhu, Ming
  • Nature Methods, Vol. 9, Issue 9
  • DOI: 10.1038/nmeth.2099

Circos: An information aesthetic for comparative genomics
journal, June 2009


Melanoma genome sequencing reveals frequent PREX2 mutations
journal, May 2012

  • Berger, Michael F.; Hodis, Eran; Heffernan, Timothy P.
  • Nature, Vol. 485, Issue 7399
  • DOI: 10.1038/nature11071

The role of PTEN signaling perturbations in cancer and in targeted therapy
journal, September 2008


p21-activated Kinases (PAKs) Mediate the Phosphorylation of PREX2 Protein to Initiate Feedback Inhibition of Rac1 GTPase
journal, November 2015

  • Barrows, Douglas; Schoenfeld, Sarah M.; Hodakoski, Cindy
  • Journal of Biological Chemistry, Vol. 290, Issue 48
  • DOI: 10.1074/jbc.M115.668244

Imaging protein activity in live embryos using fluorescence resonance energy transfer biosensors
journal, November 2011


Regulation of PTEN Activity by Its Carboxyl-terminal Autoinhibitory Domain
journal, August 2007

  • Odriozola, Leticia; Singh, Gobind; Hoang, Thuong
  • Journal of Biological Chemistry, Vol. 282, Issue 32
  • DOI: 10.1074/jbc.M611240200

Cross-linking mass spectrometry: methods and applications in structural, molecular and systems biology
journal, October 2018

  • O’Reilly, Francis J.; Rappsilber, Juri
  • Nature Structural & Molecular Biology, Vol. 25, Issue 11
  • DOI: 10.1038/s41594-018-0147-0

The functions and regulation of the PTEN tumour suppressor: new modes and prospects
journal, June 2018

  • Lee, Yu-Ru; Chen, Ming; Pandolfi, Pier Paolo
  • Nature Reviews Molecular Cell Biology, Vol. 19, Issue 9
  • DOI: 10.1038/s41580-018-0015-0

PTEN inhibits PREX2-catalyzed activation of RAC1 to restrain tumor cell invasion
journal, March 2015


Cryo–electron microscopy structure and analysis of the P-Rex1–Gβγ signaling scaffold
journal, October 2019


The first DEP domain of the RhoGEF P-Rex1 autoinhibits activity and contributes to membrane binding
journal, September 2020

  • Ravala, Sandeep K.; Hopkins, Jesse B.; Plescia, Caroline B.
  • Journal of Biological Chemistry, Vol. 295, Issue 36
  • DOI: 10.1074/jbc.RA120.014534

Regulation of P-Rex1 by Phosphatidylinositol (3,4,5)-Trisphosphate and Gβγ Subunits
journal, November 2004

  • Hill, Kirsti; Krugmann, Sonja; Andrews, Simon R.
  • Journal of Biological Chemistry, Vol. 280, Issue 6
  • DOI: 10.1074/jbc.M411262200

SWISS-MODEL: homology modelling of protein structures and complexes
journal, May 2018

  • Waterhouse, Andrew; Bertoni, Martino; Bienert, Stefan
  • Nucleic Acids Research, Vol. 46, Issue W1
  • DOI: 10.1093/nar/gky427

Whole genomes redefine the mutational landscape of pancreatic cancer
journal, February 2015

  • Waddell, Nicola; Pajic, Marina; Patch, Ann-Marie
  • Nature, Vol. 518, Issue 7540
  • DOI: 10.1038/nature14169

Molecular Features of Phosphatase and Tensin Homolog (PTEN) Regulation by C-terminal Phosphorylation
journal, July 2016

  • Chen, Zan; Dempsey, Daniel R.; Thomas, Stefani N.
  • Journal of Biological Chemistry, Vol. 291, Issue 27
  • DOI: 10.1074/jbc.M116.728980

The intrinsically disordered tails of PTEN and PTEN-L have distinct roles in regulating substrate specificity and membrane activity
journal, January 2016

  • Masson, Glenn R.; Perisic, Olga; Burke, John E.
  • Biochemical Journal, Vol. 473, Issue 2
  • DOI: 10.1042/BJ20150931

COSMIC: the Catalogue Of Somatic Mutations In Cancer
journal, October 2018

  • Tate, John G.; Bamford, Sally; Jubb, Harry C.
  • Nucleic Acids Research, Vol. 47, Issue D1
  • DOI: 10.1093/nar/gky1015

Truncating PREX2 mutations activate its GEF activity and alter gene expression regulation in NRAS-mutant melanoma
journal, February 2016

  • Lissanu Deribe, Yonathan; Shi, Yanxia; Rai, Kunal
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 9
  • DOI: 10.1073/pnas.1513801113

Structural and Biochemical Characterization of the Catalytic Core of the Metastatic Factor P-Rex1 and Its Regulation by PtdIns(3,4,5)P3
journal, May 2016


PTEN Functions by Recruitment to Cytoplasmic Vesicles
journal, April 2015


Activation of Rac and Cdc42 Video Imaged by Fluorescent Resonance Energy Transfer-Based Single-Molecule Probes in the Membrane of Living Cells
journal, September 2002


Structures and target recognition modes of PDZ domains: recurring themes and emerging pictures
journal, September 2013


Activation of the PI3K Pathway in Cancer Through Inhibition of PTEN by Exchange Factor P-REX2a
journal, September 2009


PTEN Hopping on the Cell Membrane Is Regulated via a Positively-Charged C2 Domain
journal, September 2014


P-Rex1, a PtdIns(3,4,5)P3- and Gβγ-Regulated Guanine-Nucleotide Exchange Factor for Rac
journal, March 2002


Crystal Structure of the PTEN Tumor Suppressor
journal, October 1999


Structural and biochemical characterization of the pleckstrin homology domain of the RhoGEF P-Rex2 and its regulation by PIP3
journal, January 2019


Development of an optimized backbone of FRET biosensors for kinases and GTPases
journal, December 2011

  • Komatsu, Naoki; Aoki, Kazuhiro; Yamada, Masashi
  • Molecular Biology of the Cell, Vol. 22, Issue 23
  • DOI: 10.1091/mbc.e11-01-0072