DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Strategies for Constructing and Operating DNA Origami Linear Actuators

Abstract

Abstract Linear actuators are ubiquitous components at all scales of engineering. DNA nanotechnology offers a unique opportunity for bottom‐up assembly at the molecular scale, providing nanoscale precision with multiple methods for constructing and operating devices. In this paper, DNA origami linear actuators with up to 200 nm travel, based on a rail threading a topologically locked slider, are demonstrated. Two strategies, one‐ and two‐pot assembly, are demonstrated whereby the two components are folded from one or two DNA scaffold strands, respectively. In order to control the position of the slider on the rail, the rail and the inside of the slider are decorated with single‐stranded oligonucleotides with distinct sequences. Two positioning strategies, based on diffusion and capture of signaling strands, are used to link the slider reversibly to determined positions on the rail with high yield and precision. These machine components provide a basis for applications in molecular machinery and nanoscale manufacture including programmed chemical synthesis.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Department of Physics University of Oxford Parks Road Oxford OX1 3PU UK
Publication Date:
Research Org.:
Univ. of Oxford (United Kingdom)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Energy Efficiency Office. Advanced Manufacturing Office; European Research Council (ERC)
OSTI Identifier:
1781435
Alternate Identifier(s):
OSTI ID: 1781438; OSTI ID: 1782725
Grant/Contract Number:  
EE0008310; 842291; 765703
Resource Type:
Published Article
Journal Name:
Small
Additional Journal Information:
Journal Name: Small Journal Volume: 17 Journal Issue: 20; Journal ID: ISSN 1613-6810
Publisher:
Wiley Blackwell (John Wiley & Sons)
Country of Publication:
Germany
Language:
English
Subject:
77 NANOSCIENCE AND NANOTECHNOLOGY; DNA origami; DNA nanotechnology; linear actuators; DNA mechanisms; self‐assembly

Citation Formats

Benson, Erik, Carrascosa Marzo, Rafael, Bath, Jonathan, and Turberfield, Andrew J. Strategies for Constructing and Operating DNA Origami Linear Actuators. Germany: N. p., 2021. Web. doi:10.1002/smll.202007704.
Benson, Erik, Carrascosa Marzo, Rafael, Bath, Jonathan, & Turberfield, Andrew J. Strategies for Constructing and Operating DNA Origami Linear Actuators. Germany. https://doi.org/10.1002/smll.202007704
Benson, Erik, Carrascosa Marzo, Rafael, Bath, Jonathan, and Turberfield, Andrew J. Tue . "Strategies for Constructing and Operating DNA Origami Linear Actuators". Germany. https://doi.org/10.1002/smll.202007704.
@article{osti_1781435,
title = {Strategies for Constructing and Operating DNA Origami Linear Actuators},
author = {Benson, Erik and Carrascosa Marzo, Rafael and Bath, Jonathan and Turberfield, Andrew J.},
abstractNote = {Abstract Linear actuators are ubiquitous components at all scales of engineering. DNA nanotechnology offers a unique opportunity for bottom‐up assembly at the molecular scale, providing nanoscale precision with multiple methods for constructing and operating devices. In this paper, DNA origami linear actuators with up to 200 nm travel, based on a rail threading a topologically locked slider, are demonstrated. Two strategies, one‐ and two‐pot assembly, are demonstrated whereby the two components are folded from one or two DNA scaffold strands, respectively. In order to control the position of the slider on the rail, the rail and the inside of the slider are decorated with single‐stranded oligonucleotides with distinct sequences. Two positioning strategies, based on diffusion and capture of signaling strands, are used to link the slider reversibly to determined positions on the rail with high yield and precision. These machine components provide a basis for applications in molecular machinery and nanoscale manufacture including programmed chemical synthesis.},
doi = {10.1002/smll.202007704},
journal = {Small},
number = 20,
volume = 17,
place = {Germany},
year = {Tue May 04 00:00:00 EDT 2021},
month = {Tue May 04 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1002/smll.202007704

Save / Share:

Works referenced in this record:

Super-resolution microscopy with DNA-PAINT
journal, May 2017

  • Schnitzbauer, Joerg; Strauss, Maximilian T.; Schlichthaerle, Thomas
  • Nature Protocols, Vol. 12, Issue 6
  • DOI: 10.1038/nprot.2017.024

Allosteric Control of Oxidative Catalysis by a DNA Rotaxane Nanostructure
journal, November 2017

  • Centola, Mathias; Valero, Julián; Famulok, Michael
  • Journal of the American Chemical Society, Vol. 139, Issue 45
  • DOI: 10.1021/jacs.7b08839

Tug-of-War in Motor Protein Ensembles Revealed with a Programmable DNA Origami Scaffold
journal, October 2012


A self-assembled nanoscale robotic arm controlled by electric fields
journal, January 2018


An easy-to-prepare mini-scaffold for DNA origami
journal, January 2015

  • Brown, S.; Majikes, J.; Martínez, A.
  • Nanoscale, Vol. 7, Issue 40
  • DOI: 10.1039/C5NR04921K

Rapid prototyping of 3D DNA-origami shapes with caDNAno
journal, June 2009

  • Douglas, Shawn M.; Marblestone, Adam H.; Teerapittayanon, Surat
  • Nucleic Acids Research, Vol. 37, Issue 15
  • DOI: 10.1093/nar/gkp436

Reconfigurable, braced, three-dimensional DNA nanostructures
journal, February 2008

  • Goodman, Russell P.; Heilemann, Mike; Doose, Sören
  • Nature Nanotechnology, Vol. 3, Issue 2
  • DOI: 10.1038/nnano.2008.3

TacoxDNA: A user‐friendly web server for simulations of complex DNA structures, from single strands to origami
journal, July 2019

  • Suma, Antonio; Poppleton, Erik; Matthies, Michael
  • Journal of Computational Chemistry, Vol. 40, Issue 29
  • DOI: 10.1002/jcc.26029

Reversible Light Switch for Macrocycle Mobility in a DNA Rotaxane
journal, July 2012

  • Lohmann, Finn; Ackermann, Damian; Famulok, Michael
  • Journal of the American Chemical Society, Vol. 134, Issue 29
  • DOI: 10.1021/ja3042096

Coarse-grained modelling of the structural properties of DNA origami
journal, January 2019

  • Snodin, Benedict E. K.; Schreck, John S.; Romano, Flavio
  • Nucleic Acids Research, Vol. 47, Issue 3
  • DOI: 10.1093/nar/gky1304

DNA Origami as a Carrier for Circumvention of Drug Resistance
journal, August 2012

  • Jiang, Qiao; Song, Chen; Nangreave, Jeanette
  • Journal of the American Chemical Society, Vol. 134, Issue 32
  • DOI: 10.1021/ja304263n

DNA Scissors Device Used to Measure MutS Binding to DNA Mis-pairs
journal, March 2010

  • Gu, Hongzhou; Yang, Wei; Seeman, Nadrian C.
  • Journal of the American Chemical Society, Vol. 132, Issue 12
  • DOI: 10.1021/ja910188p

Uncovering the forces between nucleosomes using DNA origami
journal, November 2016

  • Funke, Jonas J.; Ketterer, Philip; Lieleg, Corinna
  • Science Advances, Vol. 2, Issue 11
  • DOI: 10.1126/sciadv.1600974

Custom-Size, Functional, and Durable DNA Origami with Design-Specific Scaffolds
journal, April 2019

  • Engelhardt, Floris A. S.; Praetorius, Florian; Wachauf, Christian H.
  • ACS Nano, Vol. 13, Issue 5
  • DOI: 10.1021/acsnano.9b01025

Self-assembly of a nanoscale DNA box with a controllable lid
journal, May 2009

  • Andersen, Ebbe S.; Dong, Mingdong; Nielsen, Morten M.
  • Nature, Vol. 459, Issue 7243
  • DOI: 10.1038/nature07971

Folding DNA to create nanoscale shapes and patterns
journal, March 2006


Multiplexed 3D cellular super-resolution imaging with DNA-PAINT and Exchange-PAINT
journal, February 2014

  • Jungmann, Ralf; Avendaño, Maier S.; Woehrstein, Johannes B.
  • Nature Methods, Vol. 11, Issue 3
  • DOI: 10.1038/nmeth.2835

Programmable motion of DNA origami mechanisms
journal, January 2015

  • Marras, Alexander E.; Zhou, Lifeng; Su, Hai-Jun
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 3
  • DOI: 10.1073/pnas.1408869112

A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads
journal, February 2012


Molecular force spectroscopy with a DNA origami–based nanoscopic force clamp
journal, October 2016

  • Nickels, Philipp C.; Wünsch, Bettina; Holzmeister, Phil
  • Science, Vol. 354, Issue 6310
  • DOI: 10.1126/science.aah5974

A Synthetic DNA Walker for Molecular Transport
journal, September 2004

  • Shin, Jong-Shik; Pierce, Niles A.
  • Journal of the American Chemical Society, Vol. 126, Issue 35
  • DOI: 10.1021/ja047543j

Nanoscale rotary apparatus formed from tight-fitting 3D DNA components
journal, February 2016

  • Ketterer, Philip; Willner, Elena M.; Dietz, Hendrik
  • Science Advances, Vol. 2, Issue 2
  • DOI: 10.1126/sciadv.1501209

Control of enzyme reactions by a reconfigurable DNA nanovault
journal, October 2017

  • Grossi, Guido; Dalgaard Ebbesen Jepsen, Mette; Kjems, Jørgen
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/s41467-017-01072-8

Shape-Controlled Synthesis of Gold Nanostructures Using DNA Origami Molds
journal, October 2014

  • Helmi, Seham; Ziegler, Christoph; Kauert, Dominik J.
  • Nano Letters, Vol. 14, Issue 11
  • DOI: 10.1021/nl503441v

Self-assembly of carbon nanotubes into two-dimensional geometries using DNA origami templates
journal, November 2009

  • Maune, Hareem T.; Han, Si-ping; Barish, Robert D.
  • Nature Nanotechnology, Vol. 5, Issue 1
  • DOI: 10.1038/nnano.2009.311

From The Cover: Triggered amplification by hybridization chain reaction
journal, October 2004

  • Dirks, R. M.; Pierce, N. A.
  • Proceedings of the National Academy of Sciences, Vol. 101, Issue 43
  • DOI: 10.1073/pnas.0407024101

An autonomous molecular assembler for programmable chemical synthesis
journal, April 2016

  • Meng, Wenjing; Muscat, Richard A.; McKee, Mireya L.
  • Nature Chemistry, Vol. 8, Issue 6
  • DOI: 10.1038/nchem.2495

Scaling Up Digital Circuit Computation with DNA Strand Displacement Cascades
journal, June 2011


Design, optimization and analysis of large DNA and RNA nanostructures through interactive visualization, editing and molecular simulation
journal, May 2020

  • Poppleton, Erik; Bohlin, Joakim; Matthies, Michael
  • Nucleic Acids Research, Vol. 48, Issue 12
  • DOI: 10.1093/nar/gkaa417

DNA Origami Post‐Processing by CRISPR‐Cas12a
journal, January 2020

  • Xiong, Qiancheng; Xie, Chun; Zhang, Zhao
  • Angewandte Chemie International Edition, Vol. 59, Issue 10
  • DOI: 10.1002/anie.201915555

DNA Origami Rotaxanes: Tailored Synthesis and Controlled Structure Switching
journal, August 2016

  • Powell, John T.; Akhuetie-Oni, Benjamin O.; Zhang, Zhao
  • Angewandte Chemie International Edition, Vol. 55, Issue 38
  • DOI: 10.1002/anie.201604621

Coordinated Chemomechanical Cycles: A Mechanism for Autonomous Molecular Motion
journal, December 2008


Direct Mechanical Measurements Reveal the Material Properties of Three-Dimensional DNA Origami
journal, December 2011

  • Kauert, Dominik J.; Kurth, Thomas; Liedl, Tim
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl203503s

A double-stranded DNA rotaxane
journal, April 2010

  • Ackermann, Damian; Schmidt, Thorsten L.; Hannam, Jeffrey S.
  • Nature Nanotechnology, Vol. 5, Issue 6
  • DOI: 10.1038/nnano.2010.65

Long-range movement of large mechanically interlocked DNA nanostructures
journal, August 2016

  • List, Jonathan; Falgenhauer, Elisabeth; Kopperger, Enzo
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12414

Mechanical design of DNA nanostructures
journal, January 2015

  • Castro, Carlos E.; Su, Hai-Jun; Marras, Alexander E.
  • Nanoscale, Vol. 7, Issue 14
  • DOI: 10.1039/C4NR07153K

A Precisely Controlled DNA Biped Walking Device
journal, July 2004

  • Sherman, William B.; Seeman, Nadrian C.
  • Nano Letters, Vol. 4, Issue 7
  • DOI: 10.1021/nl049527q

Purification of Functionalized DNA Origami Nanostructures
journal, May 2015

  • Shaw, Alan; Benson, Erik; Högberg, Björn
  • ACS Nano, Vol. 9, Issue 5
  • DOI: 10.1021/nn507035g

Real-time magnetic actuation of DNA nanodevices via modular integration with stiff micro-levers
journal, April 2018

  • Lauback, Stephanie; Mattioli, Kara R.; Marras, Alexander E.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-03601-5

Self-assembly of three-dimensional prestressed tensegrity structures from DNA
journal, June 2010

  • Liedl, Tim; Högberg, Björn; Tytell, Jessica
  • Nature Nanotechnology, Vol. 5, Issue 7
  • DOI: 10.1038/nnano.2010.107

Casting inorganic structures with DNA molds
journal, October 2014


DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
journal, March 2012

  • Kuzyk, Anton; Schreiber, Robert; Fan, Zhiyuan
  • Nature, Vol. 483, Issue 7389
  • DOI: 10.1038/nature10889

DNA Origami Delivery System for Cancer Therapy with Tunable Release Properties
journal, September 2012

  • Zhao, Yong-Xing; Shaw, Alan; Zeng, Xianghui
  • ACS Nano, Vol. 6, Issue 10
  • DOI: 10.1021/nn3022662

Nucleic acid junctions and lattices
journal, November 1982


Autonomous multistep organic synthesis in a single isothermal solution mediated by a DNA walker
journal, October 2010


Interlocked DNA nanostructures controlled by a reversible logic circuit
journal, September 2014

  • Li, Tao; Lohmann, Finn; Famulok, Michael
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5940

A proximity-based programmable DNA nanoscale assembly line
journal, May 2010

  • Gu, Hongzhou; Chao, Jie; Xiao, Shou-Jun
  • Nature, Vol. 465, Issue 7295
  • DOI: 10.1038/nature09026

DNA nanotechnology
journal, November 2017


Self-assembly of DNA into nanoscale three-dimensional shapes
journal, May 2009

  • Douglas, Shawn M.; Dietz, Hendrik; Liedl, Tim
  • Nature, Vol. 459, Issue 7245
  • DOI: 10.1038/nature08016