DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives

Abstract

High-nickel layered oxides are enabling extraordinary growth of electric vehicles market due to its high energy density. Nonetheless, leading battery manufacturers are trying to cut down the manufacturing costs further by eliminating the dependency on cobalt in cathode materials. In this perspective, we explore several aspects that need to be considered to develop cobalt-free high-Ni layered oxides by reviewing the fundamental properties of LiNiO2. Furthermore, critical key factors for exploring alternative dopants and substituents are discussed for designing stable and inexpensive Co-free high-Ni layered oxides from a viewpoint of materials science and electrochemistry. Lastly, a perspective on the future research direction on Co-free high-Ni layered oxides are highlighted with respect to practical considerations.

Authors:
 [1];  [1];  [1]
  1. Univ. of Texas, Austin, TX (United States). Texas Materials Institute
Publication Date:
Research Org.:
Univ. of Texas, Austin, TX (United States); Univ. of Texas at Austin, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); USDOE Office of Energy Efficiency and Renewable Energy (EERE), Office of Sustainable Transportation. Vehicle Technologies Office (VTO)
OSTI Identifier:
1848793
Alternate Identifier(s):
OSTI ID: 1781242; OSTI ID: 1972438
Grant/Contract Number:  
EE0008445
Resource Type:
Accepted Manuscript
Journal Name:
Energy Storage Materials
Additional Journal Information:
Journal Volume: 34; Journal Issue: C; Journal ID: ISSN 2405-8297
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 36 MATERIALS SCIENCE; 25 ENERGY STORAGE; Chemistry; Science & Technology; Materials Science; Lithium-ion batteries; Cobalt-free cathodes; Layered oxides; High-nickel oxides

Citation Formats

Kim, Youngjin, Seong, Won Mo, and Manthiram, Arumugam. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. United States: N. p., 2020. Web. doi:10.1016/j.ensm.2020.09.020.
Kim, Youngjin, Seong, Won Mo, & Manthiram, Arumugam. Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives. United States. https://doi.org/10.1016/j.ensm.2020.09.020
Kim, Youngjin, Seong, Won Mo, and Manthiram, Arumugam. Thu . "Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives". United States. https://doi.org/10.1016/j.ensm.2020.09.020. https://www.osti.gov/servlets/purl/1848793.
@article{osti_1848793,
title = {Cobalt-free, high-nickel layered oxide cathodes for lithium-ion batteries: Progress, challenges, and perspectives},
author = {Kim, Youngjin and Seong, Won Mo and Manthiram, Arumugam},
abstractNote = {High-nickel layered oxides are enabling extraordinary growth of electric vehicles market due to its high energy density. Nonetheless, leading battery manufacturers are trying to cut down the manufacturing costs further by eliminating the dependency on cobalt in cathode materials. In this perspective, we explore several aspects that need to be considered to develop cobalt-free high-Ni layered oxides by reviewing the fundamental properties of LiNiO2. Furthermore, critical key factors for exploring alternative dopants and substituents are discussed for designing stable and inexpensive Co-free high-Ni layered oxides from a viewpoint of materials science and electrochemistry. Lastly, a perspective on the future research direction on Co-free high-Ni layered oxides are highlighted with respect to practical considerations.},
doi = {10.1016/j.ensm.2020.09.020},
journal = {Energy Storage Materials},
number = C,
volume = 34,
place = {United States},
year = {Thu Oct 01 00:00:00 EDT 2020},
month = {Thu Oct 01 00:00:00 EDT 2020}
}

Works referenced in this record:

Editors' Choice—Growth of Ambient Induced Surface Impurity Species on Layered Positive Electrode Materials and Impact on Electrochemical Performance
journal, January 2017

  • Faenza, Nicholas V.; Bruce, Lejandro; Lebens-Higgins, Zachary W.
  • Journal of The Electrochemical Society, Vol. 164, Issue 14
  • DOI: 10.1149/2.0921714jes

Effects of aluminum on the structural and electrochemical properties of LiNiO2
journal, April 2003


Effect of Na 2 SO 4 Coating layer on Nickel-Rich Li(Ni x Co y Mn z )O 2 Cathode Materials for Lithium-Ion Batteries
journal, November 2016

  • Choi, Jaewon; Kim, Jinwoo; Lee, Kyu-Tae
  • Advanced Materials Interfaces, Vol. 3, Issue 24
  • DOI: 10.1002/admi.201600784

Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?
journal, January 2019

  • Li, Hongyang; Cormier, Marc; Zhang, Ning
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1381902jes

The phase transition and optimal synthesis temperature of LiNiO2
journal, May 1999


Dissolution of Spinel Oxides and Capacity Losses in 4V Li / LixMn2O4 Cells
journal, January 1996

  • Jang, Dong H.; Shin, Young J.; Oh, Seung M.
  • Journal of The Electrochemical Society, Vol. 143, Issue 7, p. 2204-2211
  • DOI: 10.1149/1.1836981

Lithium Iron Aluminum Nickelate, LiNi x Fe y Al z O 2 —New Sustainable Cathodes for Next‐Generation Cobalt‐Free Li‐Ion Batteries
journal, July 2020

  • Muralidharan, Nitin; Essehli, Rachid; Hermann, Raphael P.
  • Advanced Materials, Vol. 32, Issue 34
  • DOI: 10.1002/adma.202002960

Crystal structure changes of LiMn0.5Ni0.5O2 cathode materials during charge and discharge studied by synchrotron based in situ XRD
journal, August 2002


First-Principles Simulation of the (Li–Ni–Vacancy)O Phase Diagram and Its Relevance for the Surface Phases in Ni-Rich Li-Ion Cathode Materials
journal, September 2017


Facilitating the Operation of Lithium-Ion Cells with High-Nickel Layered Oxide Cathodes with a Small Dose of Aluminum
journal, April 2018


Hydrophobic Ni-Rich Layered Oxides as Cathode Materials for Lithium-Ion Batteries
journal, August 2019

  • Doo, Sung Wook; Lee, Suyeon; Kim, Hanseul
  • ACS Applied Energy Materials, Vol. 2, Issue 9
  • DOI: 10.1021/acsaem.9b00786

High-pressure synthesis of solid solutions between trigonal LiNiO2 and monoclinic Li[Li1/3Ni2/3]O2
journal, May 2005

  • Shinova, Elitza; Zhecheva, Ekaterina; Stoyanova, Radostina
  • Journal of Solid State Chemistry, Vol. 178, Issue 5
  • DOI: 10.1016/j.jssc.2005.03.007

Structural Stability of LiNiO 2 Cycled above 4.2 V
journal, April 2017


Capacity fading mechanism for oxygen defect spinel as a 4 V cathode material in Li-ion batteries
journal, July 2002


Revealing the correlation between structural evolution and Li + diffusion kinetics of nickel-rich cathode materials in Li-ion batteries
journal, January 2020

  • Hong, Chaoyu; Leng, Qianyi; Zhu, Jianping
  • Journal of Materials Chemistry A, Vol. 8, Issue 17
  • DOI: 10.1039/D0TA00555J

Cobalt in lithium-ion batteries
journal, February 2020


Ni/Li Disordering in Layered Transition Metal Oxide: Electrochemical Impact, Origin, and Control
journal, June 2019


Tuning of Thermal Stability in Layered Li(Ni x Mn y Co z )O 2
journal, September 2016

  • Zheng, Jiaxin; Liu, Tongchao; Hu, Zongxiang
  • Journal of the American Chemical Society, Vol. 138, Issue 40
  • DOI: 10.1021/jacs.6b07771

Structure and magnetism of cobalt at high pressure and low temperature
journal, July 2016


Antiferromagnetism. Theory of Superexchange Interaction
journal, July 1950


Synthesis and characterization of LiNiO2 compounds as cathodes for rechargeable lithium batteries
journal, December 1998


Insight into the origin of lithium/nickel ions exchange in layered Li(NixMnyCoz)O2 cathode materials
journal, July 2018


High-nickel layered oxide cathodes for lithium-based automotive batteries
journal, January 2020


Thermal Stability of Lithium Nickel Oxide Derivatives. Part I: Li x Ni 1.02 O 2 and Li x Ni 0.89 Al 0.16 O 2 ( x = 0.50 and 0.30)
journal, November 2003

  • Guilmard, M.; Croguennec, L.; Denux, D.
  • Chemistry of Materials, Vol. 15, Issue 23
  • DOI: 10.1021/cm030059f

First-principles calculations of lithium ordering and phase stability on Li x NiO 2
journal, August 2002


There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material
journal, May 2019

  • Bianchini, Matteo; Roca-Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201812472

Influence of Cationic Substitutions on the Oxygen Loss and Reversible Capacity of Lithium-Rich Layered Oxide Cathodes
journal, March 2011

  • Deng, Z. Q.; Manthiram, A.
  • The Journal of Physical Chemistry C, Vol. 115, Issue 14
  • DOI: 10.1021/jp200375d

Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

Structural and Electrochemical Impacts of Mg/Mn Dual Dopants on the LiNiO 2 Cathode in Li-Metal Batteries
journal, March 2020

  • Mu, Linqin; Kan, Wang Hay; Kuai, Chunguang
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 11
  • DOI: 10.1021/acsami.0c00111

Structural Considerations of Layered and Spinel Lithiated Oxides for Lithium Ion Batteries
journal, January 1995

  • Thackeray, M. M.
  • Journal of The Electrochemical Society, Vol. 142, Issue 8
  • DOI: 10.1149/1.2050053

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Phase Relationships and Structural and Chemical Stabilities of Charged Li[sub 1−x]CoO[sub 2−δ] and Li[sub 1−x]Ni[sub 0.85]Co[sub 0.15]O[sub 2−δ] Cathodes
journal, January 2003

  • Venkatraman, S.; Shin, Y.; Manthiram, A.
  • Electrochemical and Solid-State Letters, Vol. 6, Issue 1
  • DOI: 10.1149/1.1525430

Suppressing detrimental phase transitions via tungsten doping of LiNiO 2 cathode for next-generation lithium-ion batteries
journal, January 2019

  • Ryu, Hoon-Hee; Park, Geon-Tae; Yoon, Chong S.
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/C9TA06402H

Updating the Structure and Electrochemistry of Li x NiO 2 for 0 ≤ x ≤ 1
journal, January 2018

  • Li, Hongyang; Zhang, Ning; Li, Jing
  • Journal of The Electrochemical Society, Vol. 165, Issue 13
  • DOI: 10.1149/2.0381813jes

Synthesis, XRD characterization and electrochemical performance of overlithiated LiNiO2
journal, September 1999


Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Thermal Stability of LiFePO[sub 4]-Based Cathodes
journal, January 1999

  • Andersson, Anna S.
  • Electrochemical and Solid-State Letters, Vol. 3, Issue 2
  • DOI: 10.1149/1.1390960

LiNixFeyAlzO2, a new cobalt-free layered cathode material for advanced Li-ion batteries
journal, September 2020


Factors Influencing the Capacity Fade of Spinel Lithium Manganese Oxides
journal, January 2004

  • Shin, Youngjoon; Manthiram, Arumugam
  • Journal of The Electrochemical Society, Vol. 151, Issue 2
  • DOI: 10.1149/1.1634274

Impact of Dopants (Al, Mg, Mn, Co) on the Reactivity of Li x NiO 2  with the Electrolyte of Li-Ion Batteries
journal, January 2019

  • Cormier, Marc M. E.; Zhang, Ning; Liu, Aaron
  • Journal of The Electrochemical Society, Vol. 166, Issue 13
  • DOI: 10.1149/2.0491913jes

Structural Fatigue in Spinel Electrodes in High Voltage (4 V) Li/Li[sub x]Mn[sub 2]O[sub 4] Cells
journal, January 1999

  • Thackeray, Michael M.
  • Electrochemical and Solid-State Letters, Vol. 1, Issue 1
  • DOI: 10.1149/1.1390617

Alkali Metal-Nickel Oxides of the Type MNiO 2
journal, March 1954

  • Dyer, Lawrence D.; Borie, Bernard S.; Smith, G. Pedro
  • Journal of the American Chemical Society, Vol. 76, Issue 6
  • DOI: 10.1021/ja01635a012

A perspective on the high-voltage LiMn1.5Ni0.5O4 spinel cathode for lithium-ion batteries
journal, January 2014

  • Manthiram, Arumugam; Chemelewski, Katharine; Lee, Eun-Sung
  • Energy & Environmental Science, Vol. 7, Issue 4
  • DOI: 10.1039/c3ee42981d

Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides
journal, June 1994

  • Kanno, R.; Kubo, H.; Kawamoto, Y.
  • Journal of Solid State Chemistry, Vol. 110, Issue 2
  • DOI: 10.1006/jssc.1994.1162

Dopant Distribution in Co-Free High-Energy Layered Cathode Materials
journal, November 2019


An Outlook on Lithium Ion Battery Technology
journal, September 2017


Electrodes with High Power and High Capacity for Rechargeable Lithium Batteries
journal, February 2006

  • Kang, Kisuk; Shirley Meng, Ying; Breger, Julien
  • Science, Vol. 311, Issue 5763, p. 977-980
  • DOI: 10.1126/science.1122152

Thermodynamics of Antisite Defects in Layered NMC Cathodes: Systematic Insights from High-Precision Powder Diffraction Analyses
journal, December 2019


The preparation, crystallography, and magnetic properties of the LixCo(1−x)O system
journal, October 1958

  • Johnston, W. D.; Heikes, R. R.; Sestrich, D.
  • Journal of Physics and Chemistry of Solids, Vol. 7, Issue 1
  • DOI: 10.1016/0022-3697(58)90175-6

A reflection on lithium-ion battery cathode chemistry
journal, March 2020


Comparison of Metal Ion Dissolutions from Lithium Ion Battery Cathodes
journal, January 2006

  • Choi, W.; Manthiram, A.
  • Journal of The Electrochemical Society, Vol. 153, Issue 9
  • DOI: 10.1149/1.2219710

Role of Na + in the Cation Disorder of [Li 1-x Na x ]NiO 2 as a Cathode for Lithium-Ion Batteries
journal, January 2018

  • Kim, Hanseul; Choi, Aram; Doo, Sung Wook
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0771802jes

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Visualization of Light Elements using 4D STEM: The Layered‐to‐Rock Salt Phase Transition in LiNiO 2 Cathode Material
journal, May 2020

  • Ahmed, Shamail; Bianchini, Matteo; Pokle, Anuj
  • Advanced Energy Materials, Vol. 10, Issue 25
  • DOI: 10.1002/aenm.202001026

Effect of CO2 on layered Li1+zNi1−x−yCoxMyO2 (M=Al, Mn) cathode materials for lithium ion batteries
journal, March 2007


Modified High-Nickel Cathodes with Stable Surface Chemistry Against Ambient Air for Lithium-Ion Batteries
journal, April 2018

  • You, Ya; Celio, Hugo; Li, Jianyu
  • Angewandte Chemie International Edition, Vol. 57, Issue 22
  • DOI: 10.1002/anie.201801533

Restraining the polarization increase of Ni-rich and low-Co cathodes upon cycling by Al-doping
journal, January 2020

  • Zhang, Chunfang; Wan, Jiajia; Li, Yixiao
  • Journal of Materials Chemistry A, Vol. 8, Issue 14
  • DOI: 10.1039/D0TA00260G

Structural, electrical and electrochemical properties of LiNiO2
journal, January 2002


On the behavior of the LixNiO2 system: an electrochemical and structural overview
journal, September 1997


Intrinsic Role of Cationic Substitution in Tuning Li/Ni Mixing in High-Ni Layered Oxides
journal, March 2019


Role of Superexchange Interaction on Tuning of Ni/Li Disordering in Layered Li(Ni x Mn y Co z )O 2
journal, November 2017


Origin of Deterioration for LiNiO[sub 2] Cathode Material during Storage in Air
journal, January 2004

  • Liu, H. S.; Zhang, Z. R.; Gong, Z. L.
  • Electrochemical and Solid-State Letters, Vol. 7, Issue 7
  • DOI: 10.1149/1.1738471

A highly stabilized nickel-rich cathode material by nanoscale epitaxy control for high-energy lithium-ion batteries
journal, January 2018

  • Kim, Junhyeok; Ma, Hyunsoo; Cha, Hyungyeon
  • Energy & Environmental Science, Vol. 11, Issue 6
  • DOI: 10.1039/C8EE00155C

Dependence of Cell Failure on Cut-Off Voltage Ranges and Observation of Kinetic Hindrance in LiNi 0.8 Co 0.15 Al 0.05 O 2
journal, January 2018

  • Li, Jing; Harlow, Jessie; Stakheiko, Nikolai
  • Journal of The Electrochemical Society, Vol. 165, Issue 11
  • DOI: 10.1149/2.0491811jes

A Mg-Doped High-Nickel Layered Oxide Cathode Enabling Safer, High-Energy-Density Li-Ion Batteries
journal, January 2019


Thermal behavior of Li1−yNiO2 and the decomposition mechanism
journal, June 1998


Theory of the Magnetic Properties of Ferrous and Cobaltous Oxides, I
journal, February 1957

  • Kanamori, Junjiro
  • Progress of Theoretical Physics, Vol. 17, Issue 2
  • DOI: 10.1143/PTP.17.177

Kinetic Stability of Bulk LiNiO 2 and Surface Degradation by Oxygen Evolution in LiNiO 2 -Based Cathode Materials
journal, November 2018

  • Kong, Fantai; Liang, Chaoping; Wang, Luhua
  • Advanced Energy Materials, Vol. 9, Issue 2
  • DOI: 10.1002/aenm.201802586

A path toward cobalt-free lithium-ion cathodes
journal, November 2019


A comparison of the electrode/electrolyte reaction at elevated temperatures for various Li-ion battery cathodes
journal, June 2002


A perspective on nickel-rich layered oxide cathodes for lithium-ion batteries
journal, January 2017


LixCoO2 (0<x<-1): A new cathode material for batteries of high energy density
journal, June 1980


Theory of the Role of Covalence in the Perovskite-Type Manganites [ La ,   M ( II ) ] Mn O 3
journal, October 1955


Structural Changes and Thermal Stability of Charged LiNi x Mn y Co z O 2 Cathode Materials Studied by Combined In Situ Time-Resolved XRD and Mass Spectroscopy
journal, December 2014

  • Bak, Seong-Min; Hu, Enyuan; Zhou, Yongning
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 24
  • DOI: 10.1021/am506712c

In situ x-ray diffraction and electrochemical studies of Li1−xNiO2
journal, December 1993


Self-Passivation of a LiNiO 2 Cathode for a Lithium-Ion Battery through Zr Doping
journal, June 2018