DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents

Abstract

This work introduces a series of vinyl-imidazolium-based polyelectrolyte composites, which were structurally modified via impregnation with multivalent imidazolium-benzene ionic liquids (ILs) or crosslinked with novel cationic crosslinkers which possess internal imidazolium cations and vinylimidazolium cations at the periphery. A set of eight [C4vim][Tf2N]-based membranes were prepared via UV-initiated free radical polymerization, including four composites containing di-, tri-, tetra-, and hexa-imidazolium benzene ILs and four crosslinked derivatives which utilized tri- and tetra- vinylimidazolium benzene crosslinking agents. Structural and functional characterizations were performed, and pure gas permeation data were collected to better understand the effects of “free” ILs dispersed in the polymeric matrix versus integrated ionic crosslinks on the transport behaviors of these thin films. These imidazolium PIL:IL composites exhibited moderately high CO2 permeabilities (~20–40 Barrer), a 4–7x increase relative to corresponding neat PIL, with excellent selectivities against N2 or CH4. The addition of imidazolium-benzene fillers with increased imidazolium content were shown to correspondingly enhance CO2 solubility (di- < tri- < tetra- < hexa-), with the [C4vim][Tf2N]: [Hexa(Im+)Benz ][Tf2N] composite showing the highest CO2 permeability (PCO2 = 38.4 Barrer), while maintaining modest selectivities (αCO2/CH4 = 20.2, αCO2/N2 = 23.6). Additionally, these metrics were similarly improved with the integration of more ionic contentmore » bonded to the polymeric matrix; increased PCO2 with increased wt% of the tri- and tetra-vinylimidazolium benzene crosslinking agent was observed. This study demonstrates the intriguing interactions and effects of ionic additives or crosslinkers within a PIL matrix, revealing the potential for the tuning of the properties and transport behaviors of ionic polymers using ionic liquid-inspired small molecules.« less

Authors:
ORCiD logo; ; ; ; ORCiD logo
Publication Date:
Research Org.:
Univ. of Alabama, Tuscaloosa, AL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Department of Education
OSTI Identifier:
1780517
Alternate Identifier(s):
OSTI ID: 1852530
Grant/Contract Number:  
SC0018181; P200A180056
Resource Type:
Published Article
Journal Name:
Polymers
Additional Journal Information:
Journal Name: Polymers Journal Volume: 13 Journal Issue: 9; Journal ID: ISSN 2073-4360
Publisher:
MDPI AG
Country of Publication:
Switzerland
Language:
English
Subject:
36 MATERIALS SCIENCE; 37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; gas separation; ionic liquids; imidazolium; polyelectrolytes; crosslinkers; membranes

Citation Formats

O’Harra, Kathryn E., DeVriese, Emily M., Turflinger, Erika M., Noll, Danielle M., and Bara, Jason E. Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents. Switzerland: N. p., 2021. Web. doi:10.3390/polym13091388.
O’Harra, Kathryn E., DeVriese, Emily M., Turflinger, Erika M., Noll, Danielle M., & Bara, Jason E. Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents. Switzerland. https://doi.org/10.3390/polym13091388
O’Harra, Kathryn E., DeVriese, Emily M., Turflinger, Erika M., Noll, Danielle M., and Bara, Jason E. Sat . "Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents". Switzerland. https://doi.org/10.3390/polym13091388.
@article{osti_1780517,
title = {Design and Gas Separation Performance of Imidazolium Poly(ILs) Containing Multivalent Imidazolium Fillers and Crosslinking Agents},
author = {O’Harra, Kathryn E. and DeVriese, Emily M. and Turflinger, Erika M. and Noll, Danielle M. and Bara, Jason E.},
abstractNote = {This work introduces a series of vinyl-imidazolium-based polyelectrolyte composites, which were structurally modified via impregnation with multivalent imidazolium-benzene ionic liquids (ILs) or crosslinked with novel cationic crosslinkers which possess internal imidazolium cations and vinylimidazolium cations at the periphery. A set of eight [C4vim][Tf2N]-based membranes were prepared via UV-initiated free radical polymerization, including four composites containing di-, tri-, tetra-, and hexa-imidazolium benzene ILs and four crosslinked derivatives which utilized tri- and tetra- vinylimidazolium benzene crosslinking agents. Structural and functional characterizations were performed, and pure gas permeation data were collected to better understand the effects of “free” ILs dispersed in the polymeric matrix versus integrated ionic crosslinks on the transport behaviors of these thin films. These imidazolium PIL:IL composites exhibited moderately high CO2 permeabilities (~20–40 Barrer), a 4–7x increase relative to corresponding neat PIL, with excellent selectivities against N2 or CH4. The addition of imidazolium-benzene fillers with increased imidazolium content were shown to correspondingly enhance CO2 solubility (di- < tri- < tetra- < hexa-), with the [C4vim][Tf2N]: [Hexa(Im+)Benz ][Tf2N] composite showing the highest CO2 permeability (PCO2 = 38.4 Barrer), while maintaining modest selectivities (αCO2/CH4 = 20.2, αCO2/N2 = 23.6). Additionally, these metrics were similarly improved with the integration of more ionic content bonded to the polymeric matrix; increased PCO2 with increased wt% of the tri- and tetra-vinylimidazolium benzene crosslinking agent was observed. This study demonstrates the intriguing interactions and effects of ionic additives or crosslinkers within a PIL matrix, revealing the potential for the tuning of the properties and transport behaviors of ionic polymers using ionic liquid-inspired small molecules.},
doi = {10.3390/polym13091388},
journal = {Polymers},
number = 9,
volume = 13,
place = {Switzerland},
year = {Sat Apr 24 00:00:00 EDT 2021},
month = {Sat Apr 24 00:00:00 EDT 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.3390/polym13091388

Save / Share:

Works referenced in this record:

MATERIALS SCIENCE: A Unique Platform for Materials Design
journal, July 2008


The solution-diffusion model: a review
journal, November 1995


Tailored CO 2 -Philic Anionic Poly(ionic liquid) Composite Membranes: Synthesis, Characterization, and Gas Transport Properties
journal, March 2020

  • Kammakakam, Irshad; Bara, Jason E.; Jackson, Enrique M.
  • ACS Sustainable Chemistry & Engineering, Vol. 8, Issue 15
  • DOI: 10.1021/acssuschemeng.0c00327

CO2/H2 separation through poly(ionic liquid)–ionic liquid membranes: The effect of multicomponent gas mixtures, temperature and gas feed pressure
journal, March 2021

  • Gouveia, Andreia S. L.; Yáñez, María; Alves, Vítor D.
  • Separation and Purification Technology, Vol. 259
  • DOI: 10.1016/j.seppur.2020.118113

One-Step Synthesis of Thermosensitive Nanogels Based on Highly Cross-Linked Poly(ionic liquid)s
journal, August 2012

  • Xiong, Yubing; Liu, Jingjiang; Wang, Yujiao
  • Angewandte Chemie International Edition, Vol. 51, Issue 36
  • DOI: 10.1002/anie.201202957

CO2/light gas separation performance of cross-linked poly(vinylimidazolium) gel membranes as a function of ionic liquid loading and cross-linker content
journal, April 2012


Synthesis and gas separation properties of poly(ionic liquid)-ionic liquid composite membranes containing a copper salt
journal, October 2016


Imidazole- and imidazolium-containing polymers for biology and material science applications
journal, May 2010


Synthesis and Performance of 6FDA-Based Polyimide-Ionenes and Composites with Ionic Liquids as Gas Separation Membranes
journal, July 2019

  • O’Harra, Kathryn E.; Kammakakam, Irshad; Devriese, Emily M.
  • Membranes, Vol. 9, Issue 7
  • DOI: 10.3390/membranes9070079

Tailoring macromolecular architecture with imidazole functionality: A perspective for controlled polymerization processes
journal, April 2011


Supramolecular Structures from Polycarbene Ligands and Transition Metal Ions
journal, January 2011

  • Rit, Arnab; Pape, Tania; Hepp, Alexander
  • Organometallics, Vol. 30, Issue 2
  • DOI: 10.1021/om101102j

In Situ Preparation of Crosslinked Polymer Electrolytes for Lithium Ion Batteries: A Comparison of Monomer Systems
journal, July 2020

  • Röchow, Eike T.; Coeler, Matthias; Pospiech, Doris
  • Polymers, Vol. 12, Issue 8
  • DOI: 10.3390/polym12081707

Recent Advances in the Design of Ionenes: Toward Convergence with High‐Performance Polymers
journal, May 2019


Gas permeation studies in supported ionic liquid membranes
journal, July 2010

  • Neves, Luísa A.; Crespo, João G.; Coelhoso, Isabel M.
  • Journal of Membrane Science, Vol. 357, Issue 1-2
  • DOI: 10.1016/j.memsci.2010.04.016

Toward controlled functional sequencing and hierarchical structuring in imidazolium ionenes
journal, September 2020

  • O'Harra, Kathryn E.; Bara, Jason E.
  • Polymer International
  • DOI: 10.1002/pi.6109

Combination of ionic liquids with membrane technology: A new approach for CO2 separation
journal, January 2016


Membrane-based gas separation
journal, August 1993


Ionic Polyimides: Hybrid Polymer Architectures and Composites with Ionic Liquids for Advanced Gas Separation Membranes
journal, April 2017

  • Mittenthal, Max S.; Flowers, Brian S.; Bara, Jason E.
  • Industrial & Engineering Chemistry Research, Vol. 56, Issue 17
  • DOI: 10.1021/acs.iecr.7b00462

Energy-efficient polymeric gas separation membranes for a sustainable future: A review
journal, August 2013


Synthesis of imidazolium-mediated Poly(benzoxazole) Ionene and composites with ionic liquids as advanced gas separation membranes
journal, February 2021


Guide to CO 2 Separations in Imidazolium-Based Room-Temperature Ionic Liquids
journal, March 2009

  • Bara, Jason E.; Carlisle, Trevor K.; Gabriel, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 6
  • DOI: 10.1021/ie8016237

Preparation of Thermo-Responsive Poly(ionic liquid)s-Based Nanogels via One-Step Cross-Linking Copolymerization
journal, September 2015


Imidazolium-Based Poly(ionic liquid)/Ionic Liquid Ion-Gels with High Ionic Conductivity Prepared from a Curable Poly(ionic liquid)
journal, May 2016

  • Cowan, Matthew G.; Lopez, Alexander M.; Masuda, Miyuki
  • Macromolecular Rapid Communications, Vol. 37, Issue 14
  • DOI: 10.1002/marc.201600029

Polymeric ionic liquids: Broadening the properties and applications of polyelectrolytes
journal, December 2011


Vibrational Spectroscopy of Ionic Liquids
journal, January 2017


Synthesis and Performance of Polymerizable Room-Temperature Ionic Liquids as Gas Separation Membranes
journal, August 2007

  • Bara, Jason E.; Lessmann, Sonja; Gabriel, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 46, Issue 16
  • DOI: 10.1021/ie0704492

Designing Imidazolium Poly(amide-amide) and Poly(amide-imide) Ionenes and Their Interactions with Mono- and Tris(imidazolium) Ionic Liquids
journal, May 2020

  • O’Harra, Kathryn E.; Noll, Danielle M.; Kammakakam, Irshad
  • Polymers, Vol. 12, Issue 6
  • DOI: 10.3390/polym12061254

High performance membranes based on ionic liquid polymers for CO2 separation from the flue gas
journal, January 2012

  • Li, Pei; Paul, D. R.; Chung, Tai-Shung
  • Green Chemistry, Vol. 14, Issue 4
  • DOI: 10.1039/c2gc16354c

Recent Advances in Innovative Polymer Electrolytes based on Poly(ionic liquid)s
journal, September 2015


Self‐healing imidazolium‐based ionene‐polyamide membranes: an experimental study on physical and gas transport properties
journal, March 2019

  • Kammakakam, Irshad; O'Harra, Kathryn E.; Dennis, Grayson P.
  • Polymer International, Vol. 68, Issue 6
  • DOI: 10.1002/pi.5802

Systematic Investigation of the Photopolymerization of Imidazolium-Based Ionic Liquid Styrene and Vinyl Monomers: Systematic Investigation of the Photopolymerization of Imidazolium-Based Ionic Liquid Styrene and Vinyl Monomers
journal, September 2018

  • Whitley, John W.; Jeffrey Horne, William; Shannon, Matthew S.
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 56, Issue 20
  • DOI: 10.1002/pola.29211

Ionic liquid-based materials: a platform to design engineered CO 2 separation membranes
journal, January 2016

  • Tomé, Liliana C.; Marrucho, Isabel M.
  • Chemical Society Reviews, Vol. 45, Issue 10
  • DOI: 10.1039/C5CS00510H

Synthesis and Performance of Aromatic Polyamide Ionenes as Gas Separation Membranes
journal, March 2020


Recent progress in ionic liquid membranes for gas separation
journal, September 2018


Design and Synthesis of Imidazolium-Mediated Tröger’s Base-Containing Ionene Polymers for Advanced CO 2 Separation Membranes
journal, February 2019


Vinyl-Functionalized Poly(imidazolium)s: A Curable Polymer Platform for Cross-Linked Ionic Liquid Gel Synthesis
journal, January 2014

  • Carlisle, Trevor K.; McDanel, William M.; Cowan, Matthew G.
  • Chemistry of Materials, Vol. 26, Issue 3, p. 1294-1296
  • DOI: 10.1021/cm403885r

Thermomechanical and Conductive Properties of Thiol–Ene Poly(ionic liquid) Networks Containing Backbone and Pendant Imidazolium Groups
journal, November 2018

  • Bratton, Abigail F.; Kim, Sung-Soo; Ellison, Christopher J.
  • Industrial & Engineering Chemistry Research, Vol. 57, Issue 48
  • DOI: 10.1021/acs.iecr.8b04720

Reaction of Diazole Anions with Hexafluorobanzene: An Unexpectedly Facile Entry into Hexa(diazol-1-yl)benzenes
journal, January 1993

  • N. Henrie II, Robert; H. Yeager, Walter
  • HETEROCYCLES, Vol. 35, Issue 1
  • DOI: 10.3987/COM-92-S38

Poly(ionic liquid)s: An update
journal, July 2013


Main-chain imidazolium polymer membranes for CO2 separations: An initial study of a new ionic liquid-inspired platform
journal, September 2010

  • Carlisle, Trevor K.; Bara, Jason E.; Lafrate, Andrew L.
  • Journal of Membrane Science, Vol. 359, Issue 1-2
  • DOI: 10.1016/j.memsci.2009.10.022

Membrane Gas Separation: A Review/State of the Art
journal, May 2009

  • Bernardo, P.; Drioli, E.; Golemme, G.
  • Industrial & Engineering Chemistry Research, Vol. 48, Issue 10
  • DOI: 10.1021/ie8019032