DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Widespread polycistronic gene expression in green algae

Abstract

Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis. Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacementmore » of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [8];  [4]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [3]; ORCiD logo [5]; ORCiD logo [11]
  1. UCLA DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095,, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095,
  2. Joint Genome Institute, United States Department of Energy, Berkeley, CA 94720,, Institute of Evolutionary Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom,
  3. Department of Plant Biology, University of California, Davis, CA 95616,
  4. Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99354,
  5. Biology Department, Brookhaven National Laboratory, Upton, NY 11973,
  6. HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806,
  7. Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095,
  8. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720,
  9. Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720,, Division of Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA 94720,, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720-3102,
  10. Joint Genome Institute, United States Department of Energy, Berkeley, CA 94720,, HudsonAlpha Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806,
  11. UCLA DOE Institute for Genomics and Proteomics, University of California, Los Angeles, CA 90095,, Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095,, Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720,, Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720,, Division of Environmental Genomics and Systems Biology, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Publication Date:
Research Org.:
Brookhaven National Laboratory (BNL), Upton, NY (United States); Pacific Northwest National Laboratory (PNNL), Richland, WA (United States). Environmental Molecular Sciences Laboratory (EMSL); USDOE Joint Genome Institute (JGI), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); European Molecular Biology Organization
OSTI Identifier:
1779559
Alternate Identifier(s):
OSTI ID: 1756294; OSTI ID: 1768889
Report Number(s):
BNL-220781-2021-JAAM; PNNL-30295
Journal ID: ISSN 0027-8424; e2017714118
Grant/Contract Number:  
SC0018301; FC02-02ER63421; AC02-05CH11231; AC05-76RL01830; SC0017035; SC0012704
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 118 Journal Issue: 7; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; transcriptome; bicistronic; dicistronic; leaky ribosome scanning; uORFs; LYR-motif; respiratory complex

Citation Formats

Gallaher, Sean D., Craig, Rory J., Ganesan, Iniyan, Purvine, Samuel O., McCorkle, Sean R., Grimwood, Jane, Strenkert, Daniela, Davidi, Lital, Roth, Melissa S., Jeffers, Tim L., Lipton, Mary S., Niyogi, Krishna K., Schmutz, Jeremy, Theg, Steven M., Blaby-Haas, Crysten E., and Merchant, Sabeeha S. Widespread polycistronic gene expression in green algae. United States: N. p., 2021. Web. doi:10.1073/pnas.2017714118.
Gallaher, Sean D., Craig, Rory J., Ganesan, Iniyan, Purvine, Samuel O., McCorkle, Sean R., Grimwood, Jane, Strenkert, Daniela, Davidi, Lital, Roth, Melissa S., Jeffers, Tim L., Lipton, Mary S., Niyogi, Krishna K., Schmutz, Jeremy, Theg, Steven M., Blaby-Haas, Crysten E., & Merchant, Sabeeha S. Widespread polycistronic gene expression in green algae. United States. https://doi.org/10.1073/pnas.2017714118
Gallaher, Sean D., Craig, Rory J., Ganesan, Iniyan, Purvine, Samuel O., McCorkle, Sean R., Grimwood, Jane, Strenkert, Daniela, Davidi, Lital, Roth, Melissa S., Jeffers, Tim L., Lipton, Mary S., Niyogi, Krishna K., Schmutz, Jeremy, Theg, Steven M., Blaby-Haas, Crysten E., and Merchant, Sabeeha S. Fri . "Widespread polycistronic gene expression in green algae". United States. https://doi.org/10.1073/pnas.2017714118.
@article{osti_1779559,
title = {Widespread polycistronic gene expression in green algae},
author = {Gallaher, Sean D. and Craig, Rory J. and Ganesan, Iniyan and Purvine, Samuel O. and McCorkle, Sean R. and Grimwood, Jane and Strenkert, Daniela and Davidi, Lital and Roth, Melissa S. and Jeffers, Tim L. and Lipton, Mary S. and Niyogi, Krishna K. and Schmutz, Jeremy and Theg, Steven M. and Blaby-Haas, Crysten E. and Merchant, Sabeeha S.},
abstractNote = {Polycistronic gene expression, common in prokaryotes, was thought to be extremely rare in eukaryotes. The development of long-read sequencing of full-length transcript isomers (Iso-Seq) has facilitated a reexamination of that dogma. Using Iso-Seq, we discovered hundreds of examples of polycistronic expression of nuclear genes in two divergent species of green algae: Chlamydomonas reinhardtii and Chromochloris zofingiensis. Here, we employ a range of independent approaches to validate that multiple proteins are translated from a common transcript for hundreds of loci. A chromatin immunoprecipitation analysis using trimethylation of lysine 4 on histone H3 marks confirmed that transcription begins exclusively at the upstream gene. Quantification of polyadenylated [poly(A)] tails and poly(A) signal sequences confirmed that transcription ends exclusively after the downstream gene. Coexpression analysis found nearly perfect correlation for open reading frames (ORFs) within polycistronic loci, consistent with expression in a shared transcript. For many polycistronic loci, terminal peptides from both ORFs were identified from proteomics datasets, consistent with independent translation. Synthetic polycistronic gene pairs were transcribed and translated in vitro to recapitulate the production of two distinct proteins from a common transcript. The relative abundance of these two proteins can be modified by altering the Kozak-like sequence of the upstream gene. Replacement of the ORFs with selectable markers or reporters allows production of such heterologous proteins, speaking to utility in synthetic biology approaches. Conservation of a significant number of polycistronic gene pairs between C. reinhardtii, C. zofingiensis, and five other species suggests that this mechanism may be evolutionarily ancient and biologically important in the green algal lineage.},
doi = {10.1073/pnas.2017714118},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 7,
volume = 118,
place = {United States},
year = {Fri Feb 12 00:00:00 EST 2021},
month = {Fri Feb 12 00:00:00 EST 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.2017714118

Save / Share:

Works referenced in this record:

Gene Model Annotations for Drosophila melanogaster : The Rule-Benders
journal, June 2015

  • Crosby, Madeline A.; Gramates, L. Sian; dos Santos, Gilberto
  • G3: Genes|Genomes|Genetics, Vol. 5, Issue 8
  • DOI: 10.1534/g3.115.018937

Chlamydomonas reinhardtii: a convenient model system for the study of DNA repair in photoautotrophic eukaryotes
journal, November 2007

  • Vlček, Daniel; Ševčovičová, Andrea; Sviežená, Barbara
  • Current Genetics, Vol. 53, Issue 1
  • DOI: 10.1007/s00294-007-0163-9

REX1, a Novel Gene Required for DNA Repair
journal, June 2003

  • Cenkci, Belgin; Petersen, Jason L.; Small, Gary D.
  • Journal of Biological Chemistry, Vol. 278, Issue 25
  • DOI: 10.1074/jbc.M303249200

The Chlamydomonas Genome Reveals the Evolution of Key Animal and Plant Functions
journal, October 2007

  • Merchant, S. S.; Prochnik, S. E.; Vallon, O.
  • Science, Vol. 318, Issue 5848, p. 245-250
  • DOI: 10.1126/science.1143609

Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration
journal, April 2012

  • Thorvaldsdottir, H.; Robinson, J. T.; Mesirov, J. P.
  • Briefings in Bioinformatics, Vol. 14, Issue 2, p. 178-192
  • DOI: 10.1093/bib/bbs017

Robust Transgene Expression from Bicistronic mRNA in the Green Alga Chlamydomonas reinhardtii
journal, December 2016

  • Onishi, Masayuki; Pringle, John R.
  • G3 Genes|Genomes|Genetics, Vol. 6, Issue 12
  • DOI: 10.1534/g3.116.033035

Widespread Polycistronic Transcripts in Fungi Revealed by Single-Molecule mRNA Sequencing
journal, July 2015


The impact of nitrogen starvation on the dynamics of triacylglycerol accumulation in nine microalgae strains
journal, November 2012


Neoproterozoic origin and multiple transitions to macroscopic growth in green seaweeds
journal, January 2020

  • Del Cortona, Andrea; Jackson, Christopher J.; Bucchini, François
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 5
  • DOI: 10.1073/pnas.1910060117

eIF1 modulates the recognition of suboptimal translation initiation sites and steers gene expression via uORFs
journal, May 2017

  • Fijałkowska, Daria; Verbruggen, Steven; Ndah, Elvis
  • Nucleic Acids Research, Vol. 45, Issue 13
  • DOI: 10.1093/nar/gkx469

Comparative and Functional Algal Genomics
journal, April 2019


Physical linkage of metabolic genes in fungi is an adaptation against the accumulation of toxic intermediate compounds
journal, June 2013

  • McGary, K. L.; Slot, J. C.; Rokas, A.
  • Proceedings of the National Academy of Sciences, Vol. 110, Issue 28
  • DOI: 10.1073/pnas.1304461110

Eukaryotic LYR Proteins Interact with Mitochondrial Protein Complexes
journal, February 2015


Sensing Mitochondrial Acetyl-CoA to Tune Respiration
journal, January 2019

  • Mills, Christine A.; Trub, Alec G.; Hirschey, Matthew D.
  • Trends in Endocrinology & Metabolism, Vol. 30, Issue 1
  • DOI: 10.1016/j.tem.2018.10.003

Polycistronic gene expression in Aspergillus niger
journal, September 2017


A Series of Fortunate Events: Introducing Chlamydomonas as a Reference Organism
journal, June 2019

  • Salomé, Patrice A.; Merchant, Sabeeha S.
  • The Plant Cell, Vol. 31, Issue 8
  • DOI: 10.1105/tpc.18.00952

An unusual split Drosophila heat shock gene expressed during embryogenesis, pupation and in testis
journal, March 1988


Cloning of a polycistronic cDNA from tomato encoding  -glutamyl kinase and  -glutamyl phosphate reductase
journal, July 1997

  • Garcia-Rios, M.; Fujita, T.; LaRosa, P. C.
  • Proceedings of the National Academy of Sciences, Vol. 94, Issue 15
  • DOI: 10.1073/pnas.94.15.8249

Tying Down Loose Ends in the Chlamydomonas Genome: Functional Significance of Abundant Upstream Open Reading Frames
journal, December 2015


Analysis of SDHAF3 in familial and sporadic pheochromocytoma and paraganglioma
journal, July 2017


A Chlamydomonas-Derived Human Papillomavirus 16 E7 Vaccine Induces Specific Tumor Protection
journal, April 2013


Reciprocal Expression of Two Candidate Di-Iron Enzymes Affecting Photosystem I and Light-Harvesting Complex Accumulation
journal, March 2002

  • Moseley, Jeffrey L.; Page, M. Dudley; Alder, Nancy P.
  • The Plant Cell, Vol. 14, Issue 3
  • DOI: 10.1105/tpc.010420

Unique Features of Nuclear mRNA Poly(A) Signals and Alternative Polyadenylation in Chlamydomonas reinhardtii
journal, May 2008


Trans -splicing: Trans -splicing
journal, January 2011

  • Lasda, Erika L.; Blumenthal, Thomas
  • Wiley Interdisciplinary Reviews: RNA, Vol. 2, Issue 3
  • DOI: 10.1002/wrna.71

An imprinted, mammalian bicistronic transcript encodes two independent proteins
journal, May 1999

  • Gray, T. A.; Saitoh, S.; Nicholls, R. D.
  • Proceedings of the National Academy of Sciences, Vol. 96, Issue 10
  • DOI: 10.1073/pnas.96.10.5616

Multi-strategic RNA-seq analysis reveals a high-resolution transcriptional landscape in cotton
journal, October 2019


Improvement of reporter activity by IRES-mediated polycistronic reporter system
journal, January 2008

  • Bouabe, H.; Fassler, R.; Heesemann, J.
  • Nucleic Acids Research, Vol. 36, Issue 5
  • DOI: 10.1093/nar/gkm1119

Chromosome-level genome assembly and transcriptome of the green alga Chromochloris zofingiensis illuminates astaxanthin production
journal, May 2017

  • Roth, Melissa S.; Cokus, Shawn J.; Gallaher, Sean D.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1619928114

Translational Regulation of Yeast GCN4
journal, August 1997


Engineering and Modulating Functional Cyanobacterial CO2-Fixing Organelles
journal, June 2018


Occurrence, function and evolutionary origins of '2A-like' sequences in virus genomes
journal, April 2008

  • Luke, G. A.; de Felipe, P.; Lukashev, A.
  • Journal of General Virology, Vol. 89, Issue 4
  • DOI: 10.1099/vir.0.83428-0

Expression of MHC Class II DQ ?/? Heterodimers from Recombinant Polycistronic Retroviral Genomes
journal, March 2003

  • Shimada, Hideaki; Germana, Sharon; Hayashi, Hideki
  • Surgery Today, Vol. 33, Issue 3
  • DOI: 10.1007/s005950300041

Lineage-specific chromatin signatures reveal a regulator of lipid metabolism in microalgae
journal, July 2015


TOM9.2 Is a Calmodulin-Binding Protein Critical for TOM Complex Assembly but Not for Mitochondrial Protein Import in Arabidopsis thaliana
journal, April 2017


Regulation of Oxygenic Photosynthesis during Trophic Transitions in the Green Alga Chromochloris zofingiensis
journal, February 2019

  • Roth, Melissa S.; Gallaher, Sean D.; Westcott, Daniel J.
  • The Plant Cell, Vol. 31, Issue 3
  • DOI: 10.1105/tpc.18.00742