DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures

Abstract

Despite considerable efforts to prevent lithium (Li) dendrite growth, stable cycling of Li metal anodes with various structures remains extremely difficult due to the direct contact of the liquid electrolyte with Li. Rational design of solid-electrolyte interphase (SEI) for 3D electrodes is a promising but still challenging strategy for preventing Li dendrite growth and avoiding lithium–electrolyte side reactions in Li-metal batteries. Here, a 3D architecture is constructed with g-C3N4/graphene/g-C3N4 insulator–metal–insulator sandwiched nanosheets to guide uniform Li plating/stripping in the van der Waals gap between the graphene and the g-C3N4, and the function of which can be regarded as a 3D artificial SEI. Li deposition on the surface of g-C3N4 is suppressed due to its insulating nature. However, its uniform lithiophilic sites and nanopore channels enable homogeneous lithium plating between the graphene and the g-C3N4, prohibiting the direct contact of the electrolyte with the Li metal. The use of the g-C3N4-layer-modified 3D anode enables long-term Li deposition with a high Coulombic efficiency and stable cycling of full cells under high cathode loading, limited Li excess, and lean electrolyte conditions. The concept of a 3D artificial SEI will shed light on developing safe and stable Li-metal anodes.

Authors:
 [1];  [1];  [1]; ORCiD logo [2];  [3];  [1];  [1];  [1];  [1];  [4]; ORCiD logo [1]
  1. Beihang University, Beijing (China)
  2. Stanford Univ., CA (United States)
  3. Beijing University of Chemical Technology (China)
  4. SLAC National Accelerator Lab., Menlo Park, CA (United States); Stanford Univ., CA (United States)
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1777169
Grant/Contract Number:  
AC02-76SF00515; 51872012
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 13; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; 3D artificial SEI; confined Li deposition; dendrite‐free; Li metal batteries; van der Waals gap

Citation Formats

Zhai, Pengbo, Wang, Tianshuai, Jiang, Huaning, Wan, Jiayu, Wei, Yi, Wang, Lei, Liu, Wei, Chen, Qian, Yang, Weiwei, Cui, Yi, and Gong, Yongji. 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures. United States: N. p., 2021. Web. doi:10.1002/adma.202006247.
Zhai, Pengbo, Wang, Tianshuai, Jiang, Huaning, Wan, Jiayu, Wei, Yi, Wang, Lei, Liu, Wei, Chen, Qian, Yang, Weiwei, Cui, Yi, & Gong, Yongji. 3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures. United States. https://doi.org/10.1002/adma.202006247
Zhai, Pengbo, Wang, Tianshuai, Jiang, Huaning, Wan, Jiayu, Wei, Yi, Wang, Lei, Liu, Wei, Chen, Qian, Yang, Weiwei, Cui, Yi, and Gong, Yongji. Thu . "3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures". United States. https://doi.org/10.1002/adma.202006247. https://www.osti.gov/servlets/purl/1777169.
@article{osti_1777169,
title = {3D Artificial Solid-Electrolyte Interphase for Lithium Metal Anodes Enabled by Insulator–Metal–Insulator Layered Heterostructures},
author = {Zhai, Pengbo and Wang, Tianshuai and Jiang, Huaning and Wan, Jiayu and Wei, Yi and Wang, Lei and Liu, Wei and Chen, Qian and Yang, Weiwei and Cui, Yi and Gong, Yongji},
abstractNote = {Despite considerable efforts to prevent lithium (Li) dendrite growth, stable cycling of Li metal anodes with various structures remains extremely difficult due to the direct contact of the liquid electrolyte with Li. Rational design of solid-electrolyte interphase (SEI) for 3D electrodes is a promising but still challenging strategy for preventing Li dendrite growth and avoiding lithium–electrolyte side reactions in Li-metal batteries. Here, a 3D architecture is constructed with g-C3N4/graphene/g-C3N4 insulator–metal–insulator sandwiched nanosheets to guide uniform Li plating/stripping in the van der Waals gap between the graphene and the g-C3N4, and the function of which can be regarded as a 3D artificial SEI. Li deposition on the surface of g-C3N4 is suppressed due to its insulating nature. However, its uniform lithiophilic sites and nanopore channels enable homogeneous lithium plating between the graphene and the g-C3N4, prohibiting the direct contact of the electrolyte with the Li metal. The use of the g-C3N4-layer-modified 3D anode enables long-term Li deposition with a high Coulombic efficiency and stable cycling of full cells under high cathode loading, limited Li excess, and lean electrolyte conditions. The concept of a 3D artificial SEI will shed light on developing safe and stable Li-metal anodes.},
doi = {10.1002/adma.202006247},
journal = {Advanced Materials},
number = 13,
volume = 33,
place = {United States},
year = {Thu Feb 25 00:00:00 EST 2021},
month = {Thu Feb 25 00:00:00 EST 2021}
}

Works referenced in this record:

Negating interfacial impedance in garnet-based solid-state Li metal batteries
journal, December 2016

  • Han, Xiaogang; Gong, Yunhui; Fu, Kun (Kelvin)
  • Nature Materials, Vol. 16, Issue 5
  • DOI: 10.1038/nmat4821

Pathways for practical high-energy long-cycling lithium metal batteries
journal, February 2019


g‐C 3 N 4 Derivative Artificial Organic/Inorganic Composite Solid Electrolyte Interphase Layer for Stable Lithium Metal Anode
journal, October 2020

  • Ye, Shufen; Wang, Lifeng; Liu, Fanfan
  • Advanced Energy Materials, Vol. 10, Issue 44
  • DOI: 10.1002/aenm.202002647

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Ultrathin Bilayer of Graphite/SiO 2 as Solid Interface for Reviving Li Metal Anode
journal, August 2019

  • Pathak, Rajesh; Chen, Ke; Gurung, Ashim
  • Advanced Energy Materials, Vol. 9, Issue 36
  • DOI: 10.1002/aenm.201901486

Ultrathin Two-Dimensional Atomic Crystals as Stable Interfacial Layer for Improvement of Lithium Metal Anode
journal, September 2014

  • Yan, Kai; Lee, Hyun-Wook; Gao, Teng
  • Nano Letters, Vol. 14, Issue 10
  • DOI: 10.1021/nl503125u

Polymer–inorganic solid–electrolyte interphase for stable lithium metal batteries under lean electrolyte conditions
journal, March 2019


3D Wettable Framework for Dendrite-Free Alkali Metal Anodes
journal, May 2018

  • Zhang, Ying; Wang, Chengwei; Pastel, Glenn
  • Advanced Energy Materials, Vol. 8, Issue 18
  • DOI: 10.1002/aenm.201800635

Direct Growth of Graphene/Hexagonal Boron Nitride Stacked Layers
journal, May 2011

  • Liu, Zheng; Song, Li; Zhao, Shizhen
  • Nano Letters, Vol. 11, Issue 5
  • DOI: 10.1021/nl200464j

Electrolyte Additives for Lithium Metal Anodes and Rechargeable Lithium Metal Batteries: Progress and Perspectives
journal, October 2018

  • Zhang, Heng; Eshetu, Gebrekidan Gebresilassie; Judez, Xabier
  • Angewandte Chemie International Edition, Vol. 57, Issue 46
  • DOI: 10.1002/anie.201712702

Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
journal, April 2019


Morphological Reversibility of Modified Li-Based Anodes for Next-Generation Batteries
journal, November 2019


Fast ion transport at solid–solid interfaces in hybrid battery anodes
journal, March 2018


Recent Advances in Lithiophilic Porous Framework toward Dendrite-Free Lithium Metal Anode
journal, June 2020

  • Pathak, Rajesh; Zhou, Yue; Qiao, Qiquan
  • Applied Sciences, Vol. 10, Issue 12
  • DOI: 10.3390/app10124185

Nanoflake Arrays of Lithiophilic Metal Oxides for the Ultra-Stable Anodes of Lithium-Metal Batteries
journal, July 2018

  • Yu, Baozhi; Tao, Tao; Mateti, Srikanth
  • Advanced Functional Materials, Vol. 28, Issue 36
  • DOI: 10.1002/adfm.201803023

Pristine or Highly Defective? Understanding the Role of Graphene Structure for Stable Lithium Metal Plating
journal, November 2018


High‐Performance Li–SeS x All‐Solid‐State Lithium Batteries
journal, March 2019


Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
journal, July 2017


A “cation-anion regulation” synergistic anode host for dendrite-free lithium metal batteries
journal, February 2018


An Autotransferable g‐C 3 N 4 Li + ‐Modulating Layer toward Stable Lithium Anodes
journal, May 2019


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Lithium Silicide Surface Enrichment: A Solution to Lithium Metal Battery
journal, July 2018


Interconnected hollow carbon nanospheres for stable lithium metal anodes
journal, July 2014

  • Zheng, Guangyuan; Lee, Seok Woo; Liang, Zheng
  • Nature Nanotechnology, Vol. 9, Issue 8
  • DOI: 10.1038/nnano.2014.152

Quantifying inactive lithium in lithium metal batteries
journal, August 2019


Cryo-STEM mapping of solid–liquid interfaces and dendrites in lithium-metal batteries
journal, August 2018


Interlayered Dendrite‐Free Lithium Plating for High‐Performance Lithium‐Metal Batteries
journal, May 2019


The Failure of Solid Electrolyte Interphase on Li Metal Anode: Structural Uniformity or Mechanical Strength?
journal, March 2020


A facile surface chemistry route to a stabilized lithium metal anode
journal, July 2017


Two-Dimensional Phosphorene-Derived Protective Layers on a Lithium Metal Anode for Lithium-Oxygen Batteries
journal, April 2018


Lithium-coated polymeric matrix as a minimum volume-change and dendrite-free lithium metal anode
journal, March 2016

  • Liu, Yayuan; Lin, Dingchang; Liang, Zheng
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms10992

In situ formation of a bifunctional interlayer enabled by a conversion reaction to initiatively prevent lithium dendrites in a garnet solid electrolyte
journal, January 2019

  • Fu, Jiamin; Yu, Pengfei; Zhang, Nian
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/C8EE03390K

Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


A Novel Organic “Polyurea” Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition
journal, December 2018


Direct visualization of initial SEI morphology and growth kinetics during lithium deposition by in situ electrochemical transmission electron microscopy
journal, January 2014

  • Sacci, Robert L.; Dudney, Nancy J.; More, Karren L.
  • Chemical Communications, Vol. 50, Issue 17
  • DOI: 10.1039/c3cc49029g

Advanced Sulfur Cathode Enabled by Highly Crumpled Nitrogen-Doped Graphene Sheets for High-Energy-Density Lithium–Sulfur Batteries
journal, January 2016


Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes
journal, August 2015

  • Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms9058

Artificial Soft-Rigid Protective Layer for Dendrite-Free Lithium Metal Anode
journal, January 2018

  • Xu, Rui; Zhang, Xue-Qiang; Cheng, Xin-Bing
  • Advanced Functional Materials, Vol. 28, Issue 8
  • DOI: 10.1002/adfm.201705838

2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li–S batteries
journal, February 2018


Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


Flower-shaped lithium nitride as a protective layer via facile plasma activation for stable lithium metal anodes
journal, March 2019


Solvating power series of electrolyte solvents for lithium batteries
journal, January 2019

  • Su, Chi-Cheung; He, Meinan; Amine, Rachid
  • Energy & Environmental Science, Vol. 12, Issue 4
  • DOI: 10.1039/C9EE00141G

Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Stable metal battery anodes enabled by polyethylenimine sponge hosts by way of electrokinetic effects
journal, November 2018


Fluorinated hybrid solid-electrolyte-interphase for dendrite-free lithium deposition
journal, January 2020