DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First systematic study of L-shell opacity at stellar interior temperatures

Abstract

The first systematic study of opacity dependence on atomic number at stellar interior temperatures is used to evaluate discrepancies between measured and modeled iron opacity [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. High-temperature ( > 180 eV) chromium and nickel opacities are measured with ± 6-10% uncertainty, using the same methods employed in the previous iron experiments. The 10%-20% experiment reproducibility demonstrates experiment reliability. The overall model-data disagreements are smaller than for iron. However, the systematic study reveals shortcomings in models for density effects, excited states, and open L-shell configurations. The 30%-45% underestimate in the modeled quasicontinuum opacity at short wavelengths was observed only from iron and only at temperature above 180 eV. Thus, either opacity theories are missing physics that has nonmonotonic dependence on the number of bound electrons or there is an experimental flaw unique to the iron measurement at temperatures above 180 eV.

Authors:
 [1];  [2];  [2];  [2];  [2];  [3]; ORCiD logo [4];  [3];  [3]; ORCiD logo [4];  [3];  [2];  [5];  [6]; ORCiD logo [4];  [6];  [7];  [2];  [8];  [3] more »; ORCiD logo [4];  [5] « less
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  3. CEA, DAM, Arpajon (France)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  6. Prism Computational Sciences, Madison, WI (United States)
  7. Univ. of Nevada, Reno, NV (United States)
  8. The Ohio State Univ., Columbus, OH (United States)
Publication Date:
Research Org.:
Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1776755
Alternate Identifier(s):
OSTI ID: 1546397
Report Number(s):
LA-UR-19-21766
Journal ID: ISSN 0031-9007; TRN: US2209388
Grant/Contract Number:  
89233218CNA000001; NA0003525; NA-0003525
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 122; Journal Issue: 23; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
74 ATOMIC AND MOLECULAR PHYSICS; opacity

Citation Formats

Nagayama, Taisuke, Bailey, J. E., Loisel, G. P., Dunham, G. S., Rochau, G. A., Blancard, C., Colgan, James Patrick, Cosse, Ph., Fausurrier, G., Fontes, Christopher John, Gilleron, F., Hansen, S. B., Iglesias, C. A., Golovkin, I. E., Kilcrease, David Parker, MacFarlane, J. J., Mancini, R. C., More, R., Orban, C., Pain, J.-C., Sherrill, Manolo Edgar, and Wilson, B. G. First systematic study of L-shell opacity at stellar interior temperatures. United States: N. p., 2019. Web. doi:10.1103/PhysRevLett.122.235001.
Nagayama, Taisuke, Bailey, J. E., Loisel, G. P., Dunham, G. S., Rochau, G. A., Blancard, C., Colgan, James Patrick, Cosse, Ph., Fausurrier, G., Fontes, Christopher John, Gilleron, F., Hansen, S. B., Iglesias, C. A., Golovkin, I. E., Kilcrease, David Parker, MacFarlane, J. J., Mancini, R. C., More, R., Orban, C., Pain, J.-C., Sherrill, Manolo Edgar, & Wilson, B. G. First systematic study of L-shell opacity at stellar interior temperatures. United States. https://doi.org/10.1103/PhysRevLett.122.235001
Nagayama, Taisuke, Bailey, J. E., Loisel, G. P., Dunham, G. S., Rochau, G. A., Blancard, C., Colgan, James Patrick, Cosse, Ph., Fausurrier, G., Fontes, Christopher John, Gilleron, F., Hansen, S. B., Iglesias, C. A., Golovkin, I. E., Kilcrease, David Parker, MacFarlane, J. J., Mancini, R. C., More, R., Orban, C., Pain, J.-C., Sherrill, Manolo Edgar, and Wilson, B. G. Fri . "First systematic study of L-shell opacity at stellar interior temperatures". United States. https://doi.org/10.1103/PhysRevLett.122.235001. https://www.osti.gov/servlets/purl/1776755.
@article{osti_1776755,
title = {First systematic study of L-shell opacity at stellar interior temperatures},
author = {Nagayama, Taisuke and Bailey, J. E. and Loisel, G. P. and Dunham, G. S. and Rochau, G. A. and Blancard, C. and Colgan, James Patrick and Cosse, Ph. and Fausurrier, G. and Fontes, Christopher John and Gilleron, F. and Hansen, S. B. and Iglesias, C. A. and Golovkin, I. E. and Kilcrease, David Parker and MacFarlane, J. J. and Mancini, R. C. and More, R. and Orban, C. and Pain, J.-C. and Sherrill, Manolo Edgar and Wilson, B. G.},
abstractNote = {The first systematic study of opacity dependence on atomic number at stellar interior temperatures is used to evaluate discrepancies between measured and modeled iron opacity [J. E. Bailey et al., Nature (London) 517, 56 (2015)]. High-temperature ( > 180 eV) chromium and nickel opacities are measured with ± 6-10% uncertainty, using the same methods employed in the previous iron experiments. The 10%-20% experiment reproducibility demonstrates experiment reliability. The overall model-data disagreements are smaller than for iron. However, the systematic study reveals shortcomings in models for density effects, excited states, and open L-shell configurations. The 30%-45% underestimate in the modeled quasicontinuum opacity at short wavelengths was observed only from iron and only at temperature above 180 eV. Thus, either opacity theories are missing physics that has nonmonotonic dependence on the number of bound electrons or there is an experimental flaw unique to the iron measurement at temperatures above 180 eV.},
doi = {10.1103/PhysRevLett.122.235001},
journal = {Physical Review Letters},
number = 23,
volume = 122,
place = {United States},
year = {Fri Jun 14 00:00:00 EDT 2019},
month = {Fri Jun 14 00:00:00 EDT 2019}
}

Journal Article:

Citation Metrics:
Cited by: 66 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Parallax diagnostics of radiation source geometric dilution for iron opacity experiments
journal, November 2014

  • Nagayama, T.; Bailey, J. E.; Loisel, G.
  • Review of Scientific Instruments, Vol. 85, Issue 11
  • DOI: 10.1063/1.4889776

Model uncertainties of local-thermodynamic-equilibrium K-shell spectroscopy
journal, September 2016


An equation of state for partially ionized plasmas: The Coulomb contribution to the free energy
journal, September 2015


Investigation of the opacity of hot, dense aluminum in the region of its K edge
journal, March 1988

  • Davidson, S. J.; Foster, J. M.; Smith, C. C.
  • Applied Physics Letters, Vol. 52, Issue 10
  • DOI: 10.1063/1.99304

L -band x-ray absorption of radiatively heated nickel
journal, December 2001


Opacities for classical Cepheid models
journal, September 1990

  • Iglesias, C. A.; Rogers, F. J.; Wilson, B. G.
  • The Astrophysical Journal, Vol. 360
  • DOI: 10.1086/169110

Absorption measurements demonstrating the importance of Δ n =0 transitions in the opacity of iron
journal, July 1992


The impact of enhanced iron opacity on massive star pulsations: updated instability strips
journal, October 2015


Opacity measurements in a hot dense medium
journal, December 1991


Absorption spectroscopy of mid and neighboring Z plasmas: Iron, nickel,copper and germanium
journal, September 2009


Absorption experiments on X-ray-heated magnesium and germanium constrained samples
journal, May 2006

  • Renaudin, P.; Blancard, C.; Bruneau, J.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 99, Issue 1-3
  • DOI: 10.1016/j.jqsrt.2005.05.041

Calibrated simulations of Z opacity experiments that reproduce the experimentally measured plasma conditions
journal, February 2016


Enigmatic photon absorption in plasmas near solar interior conditions
journal, June 2015


New results on standard solar models
journal, November 2009


Diagnosis of x-ray heated Mg/Fe opacity research plasmas
journal, November 2008

  • Bailey, J. E.; Rochau, G. A.; Mancini, R. C.
  • Review of Scientific Instruments, Vol. 79, Issue 11
  • DOI: 10.1063/1.3020710

Opacity Studies of Iron in the 15–30eV Temperature Range
journal, April 2000

  • Chenais‐Popovics, Claude; Merdji, Hamed; Missalla, Thomas
  • The Astrophysical Journal Supplement Series, Vol. 127, Issue 2
  • DOI: 10.1086/313354

Reexamination of the metal contribution to astrophysical opacity
journal, November 1987

  • Iglesias, C. A.; Rogers, F. J.; Wilson, B. G.
  • The Astrophysical Journal, Vol. 322
  • DOI: 10.1086/185034

Control and diagnosis of temperature, density, and uniformity in x-ray heated iron/magnesium samples for opacity measurements
journal, May 2014

  • Nagayama, T.; Bailey, J. E.; Loisel, G.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4872324

A methodology for calibrating wavelength dependent spectral resolution for crystal spectrometers
journal, October 2012

  • Loisel, G.; Bailey, J. E.; Rochau, G. A.
  • Review of Scientific Instruments, Vol. 83, Issue 10
  • DOI: 10.1063/1.4740269

Accounting for highly excited states in detailed opacity calculations
journal, June 2015


Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity
journal, June 2016


The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


Spectral line shapes of L-shell transitions in Ne-like iron
journal, May 2016


A plea for reexamining heavy element opacities in stars
journal, September 1982

  • Simon, N. R.
  • The Astrophysical Journal, Vol. 260
  • DOI: 10.1086/183876

Numerical investigations of potential systematic uncertainties in iron opacity measurements at solar interior temperatures
journal, June 2017


Absorption experiments on x-ray-heated mid- Z constrained samples
journal, November 1996


Updated opacities from the Opacity Project
journal, June 2005


Solar Mixture Opacity Calculations Using Detailed Configuration and Level Accounting Treatments
journal, December 2011

  • Blancard, Christophe; Cossé, Philippe; Faussurier, Gérald
  • The Astrophysical Journal, Vol. 745, Issue 1
  • DOI: 10.1088/0004-637X/745/1/10

Comment on “Large Enhancement in High-Energy Photoionization of Fe XVII and Missing Continuum Plasma Opacity”
journal, December 2016


Laboratory measurement of opacity for stellar envelopes
journal, October 1997

  • Springer, P. T.; Wong, K. L.; Iglesias, C. A.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 58, Issue 4-6
  • DOI: 10.1016/S0022-4073(97)00099-X

Hybrid atomic models for spectroscopic plasma diagnostics
journal, May 2007


Role of atomic diffusion in the opacity enhancement inside B-type stars
journal, February 2018


Interpretation of the BRITE oscillation data of the hybrid pulsator ν Eridani: a call for the modification of stellar opacities
journal, December 2016

  • Daszyńska-Daszkiewicz, J.; Pamyatnykh, A. A.; Walczak, P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 466, Issue 2
  • DOI: 10.1093/mnras/stw3315

The Laser Mega-Joule : LMJ & PETAL status and Program Overview
journal, March 2016


General Impact Theory of Pressure Broadening
journal, November 1958


Experimental investigation of opacity models for stellar interior, inertial fusion, and high energy density plasmas
journal, May 2009

  • Bailey, J. E.; Rochau, G. A.; Mancini, R. C.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3089604

Astrophysical Opacity
journal, January 1994


Fe xvii Opacity at Solar Interior Conditions
journal, February 2017


First new Solar Models with opas Opacity Tables
journal, November 2015


Opacity Calculations for Solar Mixtures
journal, August 2015

  • Mondet, Guillaume; Blancard, Christophe; Cossé, Philippe
  • The Astrophysical Journal Supplement Series, Vol. 220, Issue 1
  • DOI: 10.1088/0067-0049/220/1/2

Seismic inversion of the solar entropy: A case for improving the standard solar model
journal, November 2017


Opacity from two-photon processes
journal, September 2017


Measurements of extreme uv opacities in hot dense Al, Fe, and Ho
journal, February 1996


Helioseismology and solar abundances
journal, March 2008


Spectroscopic absorption measurements of an iron plasma
journal, December 1992


Wider pulsation instability regions for β Cephei and SPB stars calculated using new Los Alamos opacities
journal, August 2015


Testing the effects of opacity and the chemical mixture on the excitation of pulsations in B stars of the Magellanic Clouds: Pulsations in B stars of the Magellanic Clouds
journal, April 2012


Opacities for stellar envelopes
journal, February 1994

  • Seaton, M. J.; Yan, Y.; Mihalas, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 266, Issue 4
  • DOI: 10.1093/mnras/266.4.805

Iron-Plasma Transmission Measurements at Temperatures Above 150 eV
journal, December 2007


A higher-than-predicted measurement of iron opacity at solar interior temperatures
journal, December 2014

  • Bailey, J. E.; Nagayama, T.; Loisel, G. P.
  • Nature, Vol. 517, Issue 7532
  • DOI: 10.1038/nature14048

Spectral lines in hot dense matter
journal, January 1977


Inversions of the Ledoux discriminant: a closer look at the tachocline
journal, September 2017

  • Buldgen, Gaël; Salmon, S. J. A. J.; Godart, M.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 472, Issue 1
  • DOI: 10.1093/mnrasl/slx139

A new Generation of los Alamos Opacity Tables
journal, January 2016


Opacity measurements of tamped NaBr samples heated by z-pinch X-rays
journal, September 2003

  • Bailey, J. E.; Arnault, P.; Blenski, T.
  • Journal of Quantitative Spectroscopy and Radiative Transfer, Vol. 81, Issue 1-4
  • DOI: 10.1016/S0022-4073(03)00050-5

Transient space localization of electrons ejected from continuum atomic processes in hot dense plasma
journal, December 2018


Works referencing / citing this record:

High Resolution Photoexcitation Measurements Exacerbate the Long-Standing Fe XVII Oscillator Strength Problem
text, January 2020

  • Kühn, Steffen; Shah, Chintan; López-Urrutia, José R. Crespo
  • GSI Helmholtzzentrum fuer Schwerionenforschung, GSI, Darmstadt
  • DOI: 10.15120/gsi-2020-00897