skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Intrinsic Ion Transport Properties of Block Copolymer Electrolytes

Abstract

Knowledge of intrinsic properties is of central importance for materials design and assessing suitability for specific applications. Self-assembling block copolymer electrolytes (BCEs) are of great interest for applications in solid-state energy storage devices. A fundamental understanding of ion transport properties, however, is hindered by the difficulty in deconvoluting extrinsic factors, such as defects, from intrinsic factors, such as the presence of interfaces between the domains. Here, we quantify the intrinsic ion transport properties of a model BCE system consisting of poly(styrene-block-ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt using a generalizable strategy of depositing thin films on interdigitated electrodes and self-assembling fully connected parallel lamellar structures throughout the films. Comparison between conductivity in homopolymer poly(ethylene oxide) (PEO)-LiTFSI electrolytes and the analogous conducting material in SEO over a range of salt concentrations (r, molar ratio of lithium ion to ethylene oxide repeat units) and temperatures reveals that between 20% and 50% of the PEO in SEO is inactive. Using mean-field theory calculations of the domain structure and monomer concentration profiles at domain interfaces-both of which vary substantially with salt concentration-the fraction of inactive PEO in the SEO, as derived from conductivity measurements, can be quantitatively reconciled with the fraction of PEOmore » that is mixed with greater than a few volume percent of polystyrene. Despite the detrimental interfacial effects for ion transport in BCEs, the intrinsic conductivity of the SEO studied here (ca. 10-3 S/cm at 90 degrees C, r = 0.085) is an order of magnitude higher than reported values from bulk samples of similar molecular weight SEO (ca. 10-4 S/cm at 90 degrees C, r = 0.085). Finally, this work provides motivation and methods for pursuing improved BCE chemical design, interfacial engineering, and processing.« less

Authors:
ORCiD logo [1]; ORCiD logo [2];  [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of Chicago, IL (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  2. Univ. of Chicago, IL (United States)
  3. Princeton Univ., Princeton, NJ (United States)
Publication Date:
Research Org.:
Ames Lab., Ames, IA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Science Foundation (NSF)
OSTI Identifier:
1774336
Grant/Contract Number:  
AC02-06CH11357; ECCS-1542205; DMR-1420709
Resource Type:
Accepted Manuscript
Journal Name:
ACS Nano
Additional Journal Information:
Journal Volume: 14; Journal Issue: 7; Journal ID: ISSN 1936-0851
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; polymer electrolyte; block copolymer; ionic conductivity; lithium ion battery; nanomaterials

Citation Formats

Sharon, Daniel, Bennington, Peter, Dolejsi, Moshe, Webb, Michael A., Dong, Ban Xuan, de Pablo, Juan J., Nealey, Paul F., and Patel, Shrayesh N.. Intrinsic Ion Transport Properties of Block Copolymer Electrolytes. United States: N. p., 2020. Web. https://doi.org/10.1021/acsnano.0c03713.
Sharon, Daniel, Bennington, Peter, Dolejsi, Moshe, Webb, Michael A., Dong, Ban Xuan, de Pablo, Juan J., Nealey, Paul F., & Patel, Shrayesh N.. Intrinsic Ion Transport Properties of Block Copolymer Electrolytes. United States. https://doi.org/10.1021/acsnano.0c03713
Sharon, Daniel, Bennington, Peter, Dolejsi, Moshe, Webb, Michael A., Dong, Ban Xuan, de Pablo, Juan J., Nealey, Paul F., and Patel, Shrayesh N.. Thu . "Intrinsic Ion Transport Properties of Block Copolymer Electrolytes". United States. https://doi.org/10.1021/acsnano.0c03713. https://www.osti.gov/servlets/purl/1774336.
@article{osti_1774336,
title = {Intrinsic Ion Transport Properties of Block Copolymer Electrolytes},
author = {Sharon, Daniel and Bennington, Peter and Dolejsi, Moshe and Webb, Michael A. and Dong, Ban Xuan and de Pablo, Juan J. and Nealey, Paul F. and Patel, Shrayesh N.},
abstractNote = {Knowledge of intrinsic properties is of central importance for materials design and assessing suitability for specific applications. Self-assembling block copolymer electrolytes (BCEs) are of great interest for applications in solid-state energy storage devices. A fundamental understanding of ion transport properties, however, is hindered by the difficulty in deconvoluting extrinsic factors, such as defects, from intrinsic factors, such as the presence of interfaces between the domains. Here, we quantify the intrinsic ion transport properties of a model BCE system consisting of poly(styrene-block-ethylene oxide) (SEO) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt using a generalizable strategy of depositing thin films on interdigitated electrodes and self-assembling fully connected parallel lamellar structures throughout the films. Comparison between conductivity in homopolymer poly(ethylene oxide) (PEO)-LiTFSI electrolytes and the analogous conducting material in SEO over a range of salt concentrations (r, molar ratio of lithium ion to ethylene oxide repeat units) and temperatures reveals that between 20% and 50% of the PEO in SEO is inactive. Using mean-field theory calculations of the domain structure and monomer concentration profiles at domain interfaces-both of which vary substantially with salt concentration-the fraction of inactive PEO in the SEO, as derived from conductivity measurements, can be quantitatively reconciled with the fraction of PEO that is mixed with greater than a few volume percent of polystyrene. Despite the detrimental interfacial effects for ion transport in BCEs, the intrinsic conductivity of the SEO studied here (ca. 10-3 S/cm at 90 degrees C, r = 0.085) is an order of magnitude higher than reported values from bulk samples of similar molecular weight SEO (ca. 10-4 S/cm at 90 degrees C, r = 0.085). Finally, this work provides motivation and methods for pursuing improved BCE chemical design, interfacial engineering, and processing.},
doi = {10.1021/acsnano.0c03713},
journal = {ACS Nano},
number = 7,
volume = 14,
place = {United States},
year = {2020},
month = {6}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Effect of Molecular Weight on the Mechanical and Electrical Properties of Block Copolymer Electrolytes
journal, June 2007

  • Singh, Mohit; Odusanya, Omolola; Wilmes, Gregg M.
  • Macromolecules, Vol. 40, Issue 13
  • DOI: 10.1021/ma0629541

The morphology of symmetric diblock copolymers as revealed by neutron reflectivity
journal, May 1990

  • Anastasiadis, Spiros H.; Russell, Thomas P.; Satija, Sushil K.
  • The Journal of Chemical Physics, Vol. 92, Issue 9
  • DOI: 10.1063/1.458499

Salt Doping in PEO-Containing Block Copolymers: Counterion and Concentration Effects
journal, April 2009

  • Young, Wen-Shiue; Epps, Thomas H.
  • Macromolecules, Vol. 42, Issue 7
  • DOI: 10.1021/ma802799p

Ion Transport Properties of Self-Assembled Polymer Electrolytes: The Role of Confinement and Interface
journal, June 2013

  • Kim, Onnuri; Jo, Gyuha; Park, Yong Jun
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 13
  • DOI: 10.1021/jz4009536

Enhanced Conductivity via Homopolymer-Rich Pathways in Block Polymer-Blended Electrolytes
journal, December 2019


Determination of Lithium-Ion Distributions in Nanostructured Block Polymer Electrolyte Thin Films by X-ray Photoelectron Spectroscopy Depth Profiling
journal, December 2014

  • Gilbert, Jonathan B.; Luo, Ming; Shelton, Cameron K.
  • ACS Nano, Vol. 9, Issue 1
  • DOI: 10.1021/nn505744r

Domain Spacing and Composition Profile Behavior in Salt-Doped Cyclic vs Linear Block Polymer Thin Films: A Joint Experimental and Simulation Study
journal, September 2017


Phase Behavior of Lithium Perchlorate-Doped Poly(styrene- b -isoprene- b -ethylene oxide) Triblock Copolymers
journal, April 2002

  • Epps, Thomas H.; Bailey, Travis S.; Pham, Hoai D.
  • Chemistry of Materials, Vol. 14, Issue 4
  • DOI: 10.1021/cm010971t

Effect of Interfaces on the Melting of PEO Confined in Triblock PS- b -PEO- b -PS Copolymers
journal, August 2013

  • Beaudoin, E.; Phan, T. N. T.; Robinet, M.
  • Langmuir, Vol. 29, Issue 34
  • DOI: 10.1021/la401889h

On the Interfacial Width in Triblock versus Diblock Copolymers:  A Neutron Reflectivity Investigation
journal, September 1998

  • Anastasiadis, S. H.; Retsos, H.; Toprakcioglu, C.
  • Macromolecules, Vol. 31, Issue 19
  • DOI: 10.1021/ma980551y

Modeling of transport of small molecules in polymer blends: Application of effective medium theory
journal, February 1983


Effect of Grain Size on the Ionic Conductivity of a Block Copolymer Electrolyte
journal, July 2014

  • Chintapalli, Mahati; Chen, X. Chelsea; Thelen, Jacob L.
  • Macromolecules, Vol. 47, Issue 15
  • DOI: 10.1021/ma501202c

On the Composition of the Top Layer of Microphase Separated Thin PS-PEO Films
journal, July 2009

  • Neto, Chiara; James, Michael; Telford, Andrew M.
  • Macromolecules, Vol. 42, Issue 13
  • DOI: 10.1021/ma900690e

Charge Transport in Nanostructured PS–PEO–PS Triblock Copolymer Electrolytes
journal, April 2014

  • Bouchet, R.; Phan, T. N. T.; Beaudoin, E.
  • Macromolecules, Vol. 47, Issue 8
  • DOI: 10.1021/ma500420w

Nanothin film conductivity measurements reveal interfacial influence on ion transport in polymer electrolytes
journal, January 2019

  • Dong, Ban Xuan; Bennington, Peter; Kambe, Yu
  • Molecular Systems Design & Engineering, Vol. 4, Issue 3
  • DOI: 10.1039/C9ME00011A

Rubbery Block Copolymer Electrolytes for Solid-State Rechargeable Lithium Batteries
journal, January 1999

  • Soo, Philip P.
  • Journal of The Electrochemical Society, Vol. 146, Issue 1
  • DOI: 10.1149/1.1391560

Self-assembly of block copolymer thin films
journal, June 2010


Effect of Tapering on Morphology and Interfacial Behavior of Diblock Copolymers from Molecular Dynamics Simulations
journal, July 2015

  • Seo, Youngmi; Brown, Jonathan R.; Hall, Lisa M.
  • Macromolecules, Vol. 48, Issue 14
  • DOI: 10.1021/ma502309h

Salt-doped block copolymers: ion distribution, domain spacing and effective χ parameter
journal, January 2012


Mechanism of Ion Transport in Amorphous Poly(ethylene oxide)/LiTFSI from Molecular Dynamics Simulations
journal, February 2006

  • Borodin, Oleg; Smith, Grant D.
  • Macromolecules, Vol. 39, Issue 4
  • DOI: 10.1021/ma052277v

Block copolymer electrolytes for rechargeable lithium batteries
journal, November 2013

  • Young, Wen-Shiue; Kuan, Wei-Fan; Epps, Thomas H.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 52, Issue 1
  • DOI: 10.1002/polb.23404

Ionic Conductivity of Low Molecular Weight Block Copolymer Electrolytes
journal, January 2013

  • Yuan, Rodger; Teran, Alexander A.; Gurevitch, Inna
  • Macromolecules, Vol. 46, Issue 3
  • DOI: 10.1021/ma3024552

Decoupling segmental relaxation and ionic conductivity for lithium-ion polymer electrolytes
journal, January 2019

  • Bresser, Dominic; Lyonnard, Sandrine; Iojoiu, Cristina
  • Molecular Systems Design & Engineering, Vol. 4, Issue 4
  • DOI: 10.1039/C9ME00038K

Theory of block copolymer interfaces in the strong segregation limit
journal, November 1993


Systematic Computational and Experimental Investigation of Lithium-Ion Transport Mechanisms in Polyester-Based Polymer Electrolytes
journal, July 2015


Interrogation of Electrochemical Properties of Polymer Electrolyte Thin Films with Interdigitated Electrodes
journal, January 2018

  • Sharon, Daniel; Bennington, Peter; Liu, Claire
  • Journal of The Electrochemical Society, Vol. 165, Issue 16
  • DOI: 10.1149/2.0291816jes

Hyperbolic tangent variational approximation for interfacial profiles of binary polymer blends
journal, September 1995

  • Lifschitz, Masha; Freed, Karl F.; Tang, Hai
  • The Journal of Chemical Physics, Vol. 103, Issue 9
  • DOI: 10.1063/1.470056

An Ambient Temperature Electrolyte with Superior Lithium Ion Conductivity based on a Self-Assembled Block Copolymer
journal, April 2018

  • Dörr, Tobias S.; Pelz, Alexander; Zhang, Peng
  • Chemistry - A European Journal, Vol. 24, Issue 32
  • DOI: 10.1002/chem.201801521

Isolating the Effect of Molecular Weight on Ion Transport of Non-Ionic Diblock Copolymer/Ionic Liquid Mixtures
journal, March 2016


Effect of Molecular Weight and Salt Concentration on Conductivity of Block Copolymer Electrolytes
journal, July 2009

  • Panday, Ashoutosh; Mullin, Scott; Gomez, Enrique D.
  • Macromolecules, Vol. 42, Issue 13
  • DOI: 10.1021/ma900451e

Surface Reconstruction Limited Conductivity in Block‐Copolymer Li Battery Electrolytes
journal, September 2019

  • Sutton, Preston; Bennington, Peter; Patel, Shrayesh N.
  • Advanced Functional Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adfm.201905977

Unifying Weak- and Strong-Segregation Block Copolymer Theories
journal, January 1996

  • Matsen, M. W.; Bates, F. S.
  • Macromolecules, Vol. 29, Issue 4
  • DOI: 10.1021/ma951138i

Effect of Nanoscale Morphology on the Conductivity of Polymerized Ionic Liquid Block Copolymers
journal, July 2011

  • Weber, Ryan L.; Ye, Yuesheng; Schmitt, Andrew L.
  • Macromolecules, Vol. 44, Issue 14
  • DOI: 10.1021/ma201067h

Monte Carlo Simulations of Asymmetric Diblock Copolymer Thin Films Confined between Two Homogeneous Surfaces
journal, May 2001

  • Wang, Qiang; Nealey, Paul F.; de Pablo, Juan J.
  • Macromolecules, Vol. 34, Issue 10
  • DOI: 10.1021/ma0018751

Quantifying Lithium Salt and Polymer Density Distributions in Nanostructured Ion-Conducting Block Polymers
journal, February 2018


Anisotropic Ionic Conductivity in Block Copolymer Membranes by Magnetic Field Alignment
journal, December 2010

  • Majewski, Pawel W.; Gopinadhan, Manesh; Jang, Woo-Sik
  • Journal of the American Chemical Society, Vol. 132, Issue 49
  • DOI: 10.1021/ja107309p

Anisotropic Proton Conduction in Aligned Block Copolymer Electrolyte Membranes at Equilibrium with Humid Air
journal, January 2010

  • Park, Moon Jeong; Balsara, Nitash P.
  • Macromolecules, Vol. 43, Issue 1
  • DOI: 10.1021/ma901980b

Theoretical and experimental determination of cell constants of planar-interdigitated electrolyte conductivity sensors
journal, March 1995


Ion Correlation Effects in Salt-Doped Block Copolymers
journal, March 2018


Universal Relationship between Conductivity and Solvation-Site Connectivity in Ether-Based Polymer Electrolytes
journal, July 2016


Ionic Liquids as Additives to Polystyrene- Block -Poly(Methyl Methacrylate) Enabling Directed Self-Assembly of Patterns with Sub-10 nm Features
journal, April 2018

  • Chen, Xuanxuan; Zhou, Chun; Chen, Shuang-Jun
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 19
  • DOI: 10.1021/acsami.8b02990

Probing-models for interdigitated electrode systems with ferroelectric thin films
journal, April 2018

  • Nguyen, Cuong H.; Nigon, Robin; Raeder, Trygve M.
  • Journal of Physics D: Applied Physics, Vol. 51, Issue 17
  • DOI: 10.1088/1361-6463/aab2a1

Effect of Molecular Weight and Salt Concentration on Ion Transport and the Transference Number in Polymer Electrolytes
journal, October 2015


Organizing thermodynamic data obtained from multicomponent polymer electrolytes: Salt‐containing polymer blends and block copolymers
journal, February 2019

  • Loo, Whitney S.; Balsara, Nitash P.
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 57, Issue 18
  • DOI: 10.1002/polb.24800

Impedance study of (PEO)10LiClO4–Al2O3 composite polymer electrolyte with blocking electrodes
journal, March 2001


Characterizing the Interface Scaling of High χ Block Copolymers near the Order–Disorder Transition
journal, December 2017


Arrhenius-type temperature dependence of the segmental relaxation below Tg
journal, June 1999

  • O’Connell, Paul A.; McKenna, Gregory B.
  • The Journal of Chemical Physics, Vol. 110, Issue 22
  • DOI: 10.1063/1.479046

Phase Diagrams and Conductivity Behavior of Poly(ethylene oxide)-Molten Salt Rubbery Electrolytes
journal, December 1994

  • Lascaud, S.; Perrier, M.; Vallee, A.
  • Macromolecules, Vol. 27, Issue 25
  • DOI: 10.1021/ma00103a034

Designing Polymer Electrolytes for Safe and High Capacity Rechargeable Lithium Batteries
journal, March 2017


Effect of monomer structure on ionic conductivity in a systematic set of polyester electrolytes
journal, June 2016


Leveraging Molecular Architecture To Design New, All-Polymer Solid Electrolytes with Simultaneous Enhancement in Modulus and Ionic Conductivity
journal, March 2018


Solid Polymer Electrolytes with Excellent High-Temperature Properties Based on Brush Block Copolymers Having Rigid Side Chains
journal, February 2017

  • Ping, Jing; Pan, Hongbing; Hou, Ping−Ping
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 7
  • DOI: 10.1021/acsami.6b15893

Structure–Conductivity Relationships in Ordered and Disordered Salt-Doped Diblock Copolymer/Homopolymer Blends
journal, September 2016


Controlled ionic conductivity via tapered block polymer electrolytes
journal, January 2015

  • Kuan, Wei-Fan; Remy, Roddel; Mackay, Michael E.
  • RSC Advances, Vol. 5, Issue 17
  • DOI: 10.1039/C4RA15953E

Broadly Accessible Self-Consistent Field Theory for Block Polymer Materials Discovery
journal, June 2016


Measurement of Three Transport Coefficients and the Thermodynamic Factor in Block Copolymer Electrolytes with Different Morphologies
journal, January 2020

  • Galluzzo, Michael D.; Loo, Whitney S.; Wang, Andrew A.
  • The Journal of Physical Chemistry B, Vol. 124, Issue 5
  • DOI: 10.1021/acs.jpcb.9b11066

Interfacial Interaction Dependence of Microdomain Orientation in Diblock Copolymer Thin Films
journal, April 2005

  • Xu, Ting; Hawker, Craig J.; Russell, Thomas P.
  • Macromolecules, Vol. 38, Issue 7
  • DOI: 10.1021/ma048005u

Anisotropic Ion Diffusion and Electrochemically Driven Transport in Nanostructured Block Copolymer Electrolytes
journal, January 2018

  • Timachova, Ksenia; Villaluenga, Irune; Cirrincione, Lisa
  • The Journal of Physical Chemistry B, Vol. 122, Issue 4
  • DOI: 10.1021/acs.jpcb.7b11371

Structure and Ionic Conductivity of Polystyrene- block -poly(ethylene oxide) Electrolytes in the High Salt Concentration Limit
journal, February 2016


Influence of molecular weight and degree of segregation on local segmental dynamics of ordered block copolymers
journal, January 2016

  • Sethuraman, Vaidyanathan; Pryamitsyn, Victor; Ganesan, Venkat
  • Journal of Polymer Science Part B: Polymer Physics, Vol. 54, Issue 9
  • DOI: 10.1002/polb.23985

Gyroid and Other Ordered Morphologies in Single-Ion Conducting Polymers and Their Impact on Ion Conductivity
journal, December 2019

  • Yan, Lu; Rank, Christina; Mecking, Stefan
  • Journal of the American Chemical Society, Vol. 142, Issue 2
  • DOI: 10.1021/jacs.9b09701

Thermodynamics of Block Copolymers with and without Salt
journal, December 2013

  • Teran, Alexander A.; Balsara, Nitash P.
  • The Journal of Physical Chemistry B, Vol. 118, Issue 1
  • DOI: 10.1021/jp408079z

Role of Defects in Ion Transport in Block Copolymer Electrolytes
journal, June 2019