DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO2(101)

Abstract

Understanding thermochemical transformations of formic acid (FA) on metal oxide surfaces is important for many catalytical reactions. Here we study thermally induced reactions of FA on a single-crystalline and nanocrystalline anatase TiO2(101). We employ a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and density functional theory (DFT) to follow the FA surface intermediates and reaction products above room temperature. We find that the primary reaction products desorbing at about 300, 480, and 515 K are molecular water, carbon monoxide, and formaldehyde, respectively. Bidentate (BD) formate and bridging hydroxyl (HOb) are identified as central intermediates in the FA transformations. Bridging oxygen vacancies (VO) are also likely participants despite their low stability at the surface. In conclusion, the parallel studies on single crystals and faceted TiO2(101) nanoparticles reveal the spectroscopic commonalities of surface species and of the thermal conversion of molecular and deprotonated forms of FA.

Authors:
ORCiD logo [1];  [1];  [2];  [1];  [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [4]; ORCiD logo [3]
  1. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Princeton Univ., NJ (United States); Washington State Univ., Pullman, WA (United States)
  3. Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Univ. of South Alabama, Mobile, AL (United States)
  4. Princeton Univ., NJ (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States). Environmental Molecular Sciences Lab. (EMSL); Princeton Univ., NJ (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division; USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1787859
Alternate Identifier(s):
OSTI ID: 1774046
Report Number(s):
PNNL-SA-159116
Journal ID: ISSN 1932-7447
Grant/Contract Number:  
AC05-76RL01830; SC0007347
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Physical Chemistry. C
Additional Journal Information:
Journal Volume: 125; Journal Issue: 14; Journal ID: ISSN 1932-7447
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Desorption; Oxides; Minerals; Annealing (metallurgy); Scanning tunneling microscopy

Citation Formats

Petrik, Nikolay G., Wang, Yang, Wen, Bo, Wu, Yiqing, Ma, Runze, Dahal, Arjun P., Gao, Feng, Rousseau, Roger J., Wang, Yong, Kimmel, Gregory A., Selloni, Annabella, and Dohnálek, Zdenek. Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO2(101). United States: N. p., 2021. Web. doi:10.1021/acs.jpcc.1c00571.
Petrik, Nikolay G., Wang, Yang, Wen, Bo, Wu, Yiqing, Ma, Runze, Dahal, Arjun P., Gao, Feng, Rousseau, Roger J., Wang, Yong, Kimmel, Gregory A., Selloni, Annabella, & Dohnálek, Zdenek. Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO2(101). United States. https://doi.org/10.1021/acs.jpcc.1c00571
Petrik, Nikolay G., Wang, Yang, Wen, Bo, Wu, Yiqing, Ma, Runze, Dahal, Arjun P., Gao, Feng, Rousseau, Roger J., Wang, Yong, Kimmel, Gregory A., Selloni, Annabella, and Dohnálek, Zdenek. Mon . "Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO2(101)". United States. https://doi.org/10.1021/acs.jpcc.1c00571. https://www.osti.gov/servlets/purl/1787859.
@article{osti_1787859,
title = {Conversion of Formic Acid on Single- and Nano-Crystalline Anatase TiO2(101)},
author = {Petrik, Nikolay G. and Wang, Yang and Wen, Bo and Wu, Yiqing and Ma, Runze and Dahal, Arjun P. and Gao, Feng and Rousseau, Roger J. and Wang, Yong and Kimmel, Gregory A. and Selloni, Annabella and Dohnálek, Zdenek},
abstractNote = {Understanding thermochemical transformations of formic acid (FA) on metal oxide surfaces is important for many catalytical reactions. Here we study thermally induced reactions of FA on a single-crystalline and nanocrystalline anatase TiO2(101). We employ a combination of scanning tunneling microscopy (STM), temperature-programmed desorption (TPD), infrared reflection absorption spectroscopy (IRAS), diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS), and density functional theory (DFT) to follow the FA surface intermediates and reaction products above room temperature. We find that the primary reaction products desorbing at about 300, 480, and 515 K are molecular water, carbon monoxide, and formaldehyde, respectively. Bidentate (BD) formate and bridging hydroxyl (HOb) are identified as central intermediates in the FA transformations. Bridging oxygen vacancies (VO) are also likely participants despite their low stability at the surface. In conclusion, the parallel studies on single crystals and faceted TiO2(101) nanoparticles reveal the spectroscopic commonalities of surface species and of the thermal conversion of molecular and deprotonated forms of FA.},
doi = {10.1021/acs.jpcc.1c00571},
journal = {Journal of Physical Chemistry. C},
number = 14,
volume = 125,
place = {United States},
year = {Mon Apr 05 00:00:00 EDT 2021},
month = {Mon Apr 05 00:00:00 EDT 2021}
}

Works referenced in this record:

On the catalytic decomposition of formic acid. I. The activation energies for oxide catalysis
journal, March 1998

  • Larsson, Ragnar; Jamróz, Michal H.; Borowiak, Marek A.
  • Journal of Molecular Catalysis A: Chemical, Vol. 129, Issue 1
  • DOI: 10.1016/S1381-1169(97)00126-X

Ab initio quantum-chemical study of the unimolecular pyrolysis mechanisms of formic acid
journal, February 1986

  • Ruelle, P.; Kesselring, U. W.; Nam-Tran, Ho
  • Journal of the American Chemical Society, Vol. 108, Issue 3
  • DOI: 10.1021/ja00263a004

Electrochemical Photolysis of Water at a Semiconductor Electrode
journal, July 1972

  • Fujishima, Akira; Honda, Kenichi
  • Nature, Vol. 238, Issue 5358, p. 37-38
  • DOI: 10.1038/238037a0

The Catalytic Decomposition of Formic Acid Vapor
journal, January 1928

  • Clark, C. H. D.; Topley, B.
  • The Journal of Physical Chemistry, Vol. 32, Issue 1
  • DOI: 10.1021/j150283a009

New reaction route of HCOOH catalytic decomposition
journal, October 2005


(Sub)Surface Mobility of Oxygen Vacancies at the TiO 2 Anatase (101) Surface
journal, September 2012


Elementary steps and site requirements in formic acid dehydration reactions on anatase and rutile TiO2 surfaces
journal, March 2020


A surface science perspective on TiO2 photocatalysis
journal, June 2011


Visible-Light Photocatalysis in Nitrogen-Doped Titanium Oxides
journal, July 2001


Switchover of Reaction Mechanism for the Catalytic Decomposition of HCOOH on a TiO 2 (110) Surface
journal, November 2007

  • Uemura, Yohei; Taniike, Toshiaki; Tada, Mizuki
  • The Journal of Physical Chemistry C, Vol. 111, Issue 44
  • DOI: 10.1021/jp074524y

Nonthermal Water Splitting on Rutile TiO 2 : Electron-Stimulated Production of H 2 and O 2 in Amorphous Solid Water Films on TiO 2 (110)
journal, February 2009

  • Petrik, Nikolay G.; Kimmel, Greg A.
  • The Journal of Physical Chemistry C, Vol. 113, Issue 11
  • DOI: 10.1021/jp805013b

Structural Sensitivity in the Dissociation of Water on TiO 2 Single-Crystal Surfaces
journal, January 1996


Infrared spectroscopy study of adsorption and photodecomposition of formic acid on reduced and defective rutile TiO 2 (110) surfaces
journal, November 2014

  • Mattsson, Andreas; Hu, Shuanglin; Hermansson, Kersti
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 32, Issue 6
  • DOI: 10.1116/1.4898568

Formation of Metastable Water Chains on Anatase TiO 2 (101)
journal, September 2017


Single-Molecule Vibrational Spectroscopy of H 2 O on Anatase TiO 2 (101)
journal, January 2017

  • Dette, Christian; Pérez-Osorio, Miguel A.; Mangel, Shai
  • The Journal of Physical Chemistry C, Vol. 121, Issue 2
  • DOI: 10.1021/acs.jpcc.6b10379

Adsorption of formic acid on rutile TiO 2 (110) revisited: An infrared reflection-absorption spectroscopy and density functional theory study
journal, January 2014

  • Mattsson, A.; Hu, Shuanglin; Hermansson, K.
  • The Journal of Chemical Physics, Vol. 140, Issue 3
  • DOI: 10.1063/1.4855176

Quickstep: Fast and accurate density functional calculations using a mixed Gaussian and plane waves approach
journal, April 2005

  • VandeVondele, Joost; Krack, Matthias; Mohamed, Fawzi
  • Computer Physics Communications, Vol. 167, Issue 2
  • DOI: 10.1016/j.cpc.2004.12.014

Formic acid adsorption and decomposition on TiO 2 (1 1 0) and on Pd/TiO 2 (1 1 0) model catalysts
journal, June 2002


Dissociation of formic acid on anatase TiO2(101) probed by vibrational spectroscopy
journal, March 2012


Molecular Water Adsorption and Reactions on α-Al 2 O 3 (0001) and α-Alumina Particles
journal, April 2018

  • Petrik, Nikolay G.; Huestis, Patricia L.; LaVerne, Jay A.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 17
  • DOI: 10.1021/acs.jpcc.8b01969

Probing Acid–Base Properties of Anatase TiO 2 Nanoparticles with Dominant {001} and {101} Facets Using Methanol Chemisorption and Surface Reactions
journal, February 2021

  • Wu, Yiqing; Gao, Feng; Wang, Huamin
  • The Journal of Physical Chemistry C, Vol. 125, Issue 7
  • DOI: 10.1021/acs.jpcc.0c11107

A climbing image nudged elastic band method for finding saddle points and minimum energy paths
journal, December 2000

  • Henkelman, Graeme; Uberuaga, Blas P.; Jónsson, Hannes
  • The Journal of Chemical Physics, Vol. 113, Issue 22, p. 9901-9904
  • DOI: 10.1063/1.1329672

Surface preparation of TiO2 anatase (101): Pitfalls and how to avoid them
journal, August 2014


The surface science of titanium dioxide
journal, January 2003


Observation of Molecular Hydrogen Produced from Bridging Hydroxyls on Anatase TiO 2 (101)
journal, October 2020

  • Deskins, N. Aaron; Kimmel, Greg A.; Petrik, Nikolay G.
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 21
  • DOI: 10.1021/acs.jpclett.0c02735

Oxygen Vacancy Promoting Catalytic Dehydration of Formic Acid on TiO 2 (110) by in Situ Scanning Tunneling Microscopic Observation
journal, October 2005

  • Aizawa, Masaki; Morikawa, Yoshitada; Namai, Yoshimichi
  • The Journal of Physical Chemistry B, Vol. 109, Issue 40
  • DOI: 10.1021/jp0523773

Formic Acid on TiO 2– x (110): Dissociation, Motion, and Vacancy Healing
journal, June 2014

  • Hu, Shuanglin; Bopp, Philippe A.; Österlund, Lars
  • The Journal of Physical Chemistry C, Vol. 118, Issue 27
  • DOI: 10.1021/jp500771d

Nobel Prize in chemistry 1912 to Sabatier: Organic chemistry or catalysis?
journal, December 2013


Strongly Constrained and Appropriately Normed Semilocal Density Functional
journal, July 2015


Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites
journal, September 1998


Self-Consistent Equations Including Exchange and Correlation Effects
journal, November 1965


Acetone and Water on TiO 2 (110):  H/D Exchange
journal, March 2005


Steps on anatase TiO2(101)
journal, July 2006

  • Gong, Xue-Qing; Selloni, Annabella; Batzill, Matthias
  • Nature Materials, Vol. 5, Issue 8
  • DOI: 10.1038/nmat1695

Structure–activity relationship of surface hydroxyl groups during NO 2 adsorption and transformation on TiO 2 nanoparticles
journal, January 2017

  • Liu, Chang; Ma, Qingxin; He, Hong
  • Environmental Science: Nano, Vol. 4, Issue 12
  • DOI: 10.1039/C7EN00920H

Efficient Photochemical Water Splitting by a Chemically Modified n-TiO2
journal, September 2002


Structure Determination of Formic Acid Reaction Products on TiO 2 (110)
journal, September 2004

  • Sayago, D. I.; Polcik, M.; Lindsay, R.
  • The Journal of Physical Chemistry B, Vol. 108, Issue 38
  • DOI: 10.1021/jp049833s

Site-dependent electron-stimulated reactions in water films on TiO2(110)
journal, December 2007

  • Lane, Christopher D.; Petrik, Nikolay G.; Orlando, Thomas M.
  • The Journal of Chemical Physics, Vol. 127, Issue 22
  • DOI: 10.1063/1.2804767

Techniques for attainment, control, and calibration of cryogenic temperatures at small single‐crystal samples under ultrahigh vacuum
journal, July 1993

  • Schlichting, H.; Menzel, D.
  • Review of Scientific Instruments, Vol. 64, Issue 7
  • DOI: 10.1063/1.1143992

Fourier Transform Reflection−Absorption IR Spectroscopy Study of Formate Adsorption on TiO 2 (110)
journal, January 1999

  • Hayden, Brian E.; King, Alex; Newton, Mark A.
  • The Journal of Physical Chemistry B, Vol. 103, Issue 1
  • DOI: 10.1021/jp983581b

Production of CO-Free H2 by Formic Acid Decomposition over Mo2C/Carbon Catalysts
journal, June 2010


First-Principles Theoretical Study and Scanning Tunneling Microscopic Observation of Dehydration Process of Formic Acid on a TiO 2 (110) Surface
journal, September 2004

  • Morikawa, Yoshitada; Takahashi, Ittetsu; Aizawa, Masaki
  • The Journal of Physical Chemistry B, Vol. 108, Issue 38
  • DOI: 10.1021/jp0497460

Photocatalysis on TiO2 Surfaces: Principles, Mechanisms, and Selected Results
journal, May 1995

  • Linsebigler, Amy L.; Lu, Guangquan.; Yates, John T.
  • Chemical Reviews, Vol. 95, Issue 3
  • DOI: 10.1021/cr00035a013

Reaction Kinetics of Water Molecules with Oxygen Vacancies on Rutile TiO 2 (110)
journal, September 2015

  • Petrik, Nikolay G.; Kimmel, Greg A.
  • The Journal of Physical Chemistry C, Vol. 119, Issue 40
  • DOI: 10.1021/acs.jpcc.5b07526

Bridging Hydroxyls on Anatase TiO 2 (101) by Water Dissociation in Oxygen Vacancies
journal, October 2017

  • Nadeem, Immad M.; Harrison, George T.; Wilson, Axel
  • The Journal of Physical Chemistry B, Vol. 122, Issue 2
  • DOI: 10.1021/acs.jpcb.7b06955

Complexity in the Decomposition of Formic Acid on the TiO 2 (110) Surface
journal, January 1997

  • Henderson, Michael A.
  • The Journal of Physical Chemistry B, Vol. 101, Issue 2
  • DOI: 10.1021/jp961494i

Probing equilibrium of molecular and deprotonated water on TiO 2 (110)
journal, February 2017

  • Wang, Zhi-Tao; Wang, Yang-Gang; Mu, Rentao
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 8
  • DOI: 10.1073/pnas.1613756114

Unimolecular Decomposition of Formic Acid in the Gas PhaseOn the Ratio of the Competing Reaction Channels
journal, June 2005

  • Saito, Ko; Shiose, Takanori; Takahashi, Osamu
  • The Journal of Physical Chemistry A, Vol. 109, Issue 24
  • DOI: 10.1021/jp045072h

Adsorption and Reaction of Methanol on Anatase TiO 2 (101) Single Crystals and Faceted Nanoparticles
journal, September 2019

  • Dahal, Arjun; Petrik, Nikolay G.; Wu, Yiqing
  • The Journal of Physical Chemistry C, Vol. 123, Issue 39
  • DOI: 10.1021/acs.jpcc.9b07080

Formic Acid Dehydration Rates and Elementary Steps on Lewis Acid–Base Site Pairs at Anatase and Rutile TiO 2 Surfaces
journal, September 2020

  • Kwon, Stephanie; Lin, Ting Chun; Iglesia, Enrique
  • The Journal of Physical Chemistry C, Vol. 124, Issue 37
  • DOI: 10.1021/acs.jpcc.0c05721

Separable dual-space Gaussian pseudopotentials
journal, July 1996


Inhomogeneous Electron Gas
journal, November 1964


Hydrogen interaction with the anatase TiO2(101) surface
journal, January 2012

  • Aschauer, Ulrich; Selloni, Annabella
  • Physical Chemistry Chemical Physics, Vol. 14, Issue 48
  • DOI: 10.1039/c2cp42288c

THE CATALYTIC DECOMPOSITION OF FORMIC ACID IN ACETIC ANHYDRIDE 1
journal, February 1923

  • Schierz, Ernest R.
  • Journal of the American Chemical Society, Vol. 45, Issue 2
  • DOI: 10.1021/ja01655a022

Binding of Formic Acid on Anatase TiO 2 (101)
journal, August 2020

  • Wang, Yang; Wen, Bo; Dahal, Arjun
  • The Journal of Physical Chemistry C, Vol. 124, Issue 37
  • DOI: 10.1021/acs.jpcc.0c06031

Pathways for carboxylic acid decomposition on titania
journal, July 1988


Frequencies and Thermal Stability of Isolated Surface Hydroxyls on Pyrogenic TiO 2 Nanoparticles
journal, September 2019

  • Mahdavi-Shakib, Akbar; Arce-Ramos, Juan M.; Austin, Rachel N.
  • The Journal of Physical Chemistry C, Vol. 123, Issue 40
  • DOI: 10.1021/acs.jpcc.9b05699

Chemical Reactivity of Reduced TiO 2 (110): The Dominant Role of Surface Defects in Oxygen Chemisorption
journal, June 2009

  • Petrik, Nikolay G.; Zhang, Zhenrong; Du, Yingge
  • The Journal of Physical Chemistry C, Vol. 113, Issue 28
  • DOI: 10.1021/jp901989x

Photocatalytic Activity of Bulk TiO 2 Anatase and Rutile Single Crystals Using Infrared Absorption Spectroscopy
journal, March 2011


Chemisorption Geometry, Vibrational Spectra, and Thermal Desorption of Formic Acid on TiO 2 (110)
journal, February 1998


Experimental Investigation of the Interaction of Water and Methanol with Anatase−TiO 2 (101)
journal, March 2003

  • Herman, G. S.; Dohnálek, Z.; Ruzycki, N.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 12
  • DOI: 10.1021/jp0275544

Surface infrared spectroscopy
journal, May 1988


Dehydration Pathway for the Dissociation of Gas-Phase Formic Acid on Pt(111) Surface Observed via Ambient-Pressure XPS
journal, January 2018

  • Jeong, Beomgyun; Jeon, Hongrae; Toyoshima, Ryo
  • The Journal of Physical Chemistry C, Vol. 122, Issue 4
  • DOI: 10.1021/acs.jpcc.7b07735

Polarization- and Azimuth-Resolved Infrared Spectroscopy of Water on TiO 2 (110): Anisotropy and the Hydrogen-Bonding Network
journal, March 2012

  • Kimmel, Greg A.; Baer, Marcel; Petrik, Nikolay G.
  • The Journal of Physical Chemistry Letters, Vol. 3, Issue 6
  • DOI: 10.1021/jz3001079