DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Electrochemistry of the NaI-AlBr 3 Molten Salt System: A Redox-Active, Low-Temperature Molten Salt Electrolyte

Abstract

NaI-AlBr 3 is a very appealing low melting temperature (<100 °C), salt system for use as an electrochemically-active electrolyte. This system was investigated for its electrochemical and physical properties with focus to energy storage considerations. A simple phase diagram was generated; at >100 °C, lower NaI concentrations had two partially miscible liquid phases, while higher NaI concentrations had solid particles. Considering the fully molten regime, electrical conductivities were evaluated over 5–25 mol% NaI and 110 °C–140 °C. Conductivities of 6.8–38.9 mS cm −1 were observed, increasing with temperature and NaI concentration. Effective diffusion coefficients of the I /I 3 redox species were found to decrease with both increasing NaI concentration and increasing applied potential. Regardless, oxidation current density at 3.6 V vs Na/Na + was observed to increase with increasing NaI concentration over 5–25 mol%. Finally, the critical interface between the molten salt electrolyte and electrode materials was found to significantly affect reaction kinetics. When carbon was used instead of tungsten, an adsorbed species, most likely I 2 , blocked surface sites and significantly decreased current densities at high potentials. This study shows the NaI-AlBr 3 system offers an attractive, low-temperature molten salt electrolyte that could be usefulmore » to many applied systems, though composition and electrode material must be considered.« less

Authors:
ORCiD logo; ORCiD logo; ORCiD logo; ; ORCiD logo; ORCiD logo
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE Office of Electricity (OE), Advanced Grid Research & Development. Power Systems Engineering Research; USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1835446
Alternate Identifier(s):
OSTI ID: 1772937
Report Number(s):
SAND-2021-3076J
Journal ID: ISSN 0013-4651
Grant/Contract Number:  
AC04-94AL85000; NA0003525
Resource Type:
Published Article
Journal Name:
Journal of the Electrochemical Society
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society Journal Volume: 168 Journal Issue: 3; Journal ID: ISSN 0013-4651
Publisher:
The Electrochemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Percival, Stephen J., Lee, Rose Y., Gross, Martha M., Peretti, Amanda S., Small, Leo J., and Spoerke, Erik D. Electrochemistry of the NaI-AlBr 3 Molten Salt System: A Redox-Active, Low-Temperature Molten Salt Electrolyte. United States: N. p., 2021. Web. doi:10.1149/1945-7111/abebae.
Percival, Stephen J., Lee, Rose Y., Gross, Martha M., Peretti, Amanda S., Small, Leo J., & Spoerke, Erik D. Electrochemistry of the NaI-AlBr 3 Molten Salt System: A Redox-Active, Low-Temperature Molten Salt Electrolyte. United States. https://doi.org/10.1149/1945-7111/abebae
Percival, Stephen J., Lee, Rose Y., Gross, Martha M., Peretti, Amanda S., Small, Leo J., and Spoerke, Erik D. Thu . "Electrochemistry of the NaI-AlBr 3 Molten Salt System: A Redox-Active, Low-Temperature Molten Salt Electrolyte". United States. https://doi.org/10.1149/1945-7111/abebae.
@article{osti_1835446,
title = {Electrochemistry of the NaI-AlBr 3 Molten Salt System: A Redox-Active, Low-Temperature Molten Salt Electrolyte},
author = {Percival, Stephen J. and Lee, Rose Y. and Gross, Martha M. and Peretti, Amanda S. and Small, Leo J. and Spoerke, Erik D.},
abstractNote = {NaI-AlBr 3 is a very appealing low melting temperature (<100 °C), salt system for use as an electrochemically-active electrolyte. This system was investigated for its electrochemical and physical properties with focus to energy storage considerations. A simple phase diagram was generated; at >100 °C, lower NaI concentrations had two partially miscible liquid phases, while higher NaI concentrations had solid particles. Considering the fully molten regime, electrical conductivities were evaluated over 5–25 mol% NaI and 110 °C–140 °C. Conductivities of 6.8–38.9 mS cm −1 were observed, increasing with temperature and NaI concentration. Effective diffusion coefficients of the I − /I 3 − redox species were found to decrease with both increasing NaI concentration and increasing applied potential. Regardless, oxidation current density at 3.6 V vs Na/Na + was observed to increase with increasing NaI concentration over 5–25 mol%. Finally, the critical interface between the molten salt electrolyte and electrode materials was found to significantly affect reaction kinetics. When carbon was used instead of tungsten, an adsorbed species, most likely I 2 , blocked surface sites and significantly decreased current densities at high potentials. This study shows the NaI-AlBr 3 system offers an attractive, low-temperature molten salt electrolyte that could be useful to many applied systems, though composition and electrode material must be considered.},
doi = {10.1149/1945-7111/abebae},
journal = {Journal of the Electrochemical Society},
number = 3,
volume = 168,
place = {United States},
year = {Thu Mar 11 00:00:00 EST 2021},
month = {Thu Mar 11 00:00:00 EST 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1149/1945-7111/abebae

Save / Share:

Works referenced in this record:

Ionic-Liquid-Mediated Extraction and Separation Processes for Bioactive Compounds: Past, Present, and Future Trends
journal, February 2017

  • Ventura, Sónia P. M.; e. Silva, Francisca A.; Quental, Maria V.
  • Chemical Reviews, Vol. 117, Issue 10
  • DOI: 10.1021/acs.chemrev.6b00550

Electrodeposition of aluminium from nonaqueous organic electrolytic systems and room temperature molten salts
journal, January 1997


First- and second-order chemical-electrochemical mechanisms
journal, August 1986

  • Savéant, J. M.; Xu, F.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 208, Issue 2
  • DOI: 10.1016/0022-0728(86)80535-6

The Conductivity of Imidazolium-Based Ionic Liquids from (248 to 468) K. B. Variation of the Anion
journal, May 2010

  • Zech, Oliver; Stoppa, Alexander; Buchner, Richard
  • Journal of Chemical & Engineering Data, Vol. 55, Issue 5
  • DOI: 10.1021/je900793r

Conductivity of ionic liquids in mixtures
journal, January 2006

  • Jarosik, Anna; Krajewski, Sebastian R.; Lewandowski, Andrzej
  • Journal of Molecular Liquids, Vol. 123, Issue 1
  • DOI: 10.1016/j.molliq.2005.06.001

Electrochemical Production of Si without Generation of CO 2 Based on the Use of a Dimensionally Stable Anode in Molten CaCl 2
journal, September 2019

  • Ge, Jianbang; Zou, Xingli; Almassi, Soroush
  • Angewandte Chemie International Edition, Vol. 58, Issue 45
  • DOI: 10.1002/anie.201905991

Electrochemistry of the NaI-AlCl 3 Molten Salt System for Use as Catholyte in Sodium Metal Batteries
journal, January 2018

  • Percival, Stephen J.; Small, Leo J.; Spoerke, Erik D.
  • Journal of The Electrochemical Society, Vol. 165, Issue 14
  • DOI: 10.1149/2.1191814jes

An Electrochemical Quartz Crystal Microbalance Study on Electrodeposition of Aluminum and Aluminum-Manganese Alloys
journal, January 2017

  • Ispas, A.; Wolff, E.; Bund, A.
  • Journal of The Electrochemical Society, Vol. 164, Issue 8
  • DOI: 10.1149/2.0381708jes

LiCl-LiI molten salt electrolyte with bismuth-lead positive electrode for liquid metal battery
journal, February 2018


Viscosity of Aluminium Chloride and Acidic Sodium Chloroaluminate Melts
journal, January 1979

  • Brockner, W.; Tørklep, K.; Øye, H. A.
  • Berichte der Bunsengesellschaft für physikalische Chemie, Vol. 83, Issue 1
  • DOI: 10.1002/bbpc.19790830102

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

Ionic Liquid Redox Catholyte for High Energy Efficiency, Low-Cost Energy Storage
journal, April 2015

  • Xue, Leigang; Tucker, Telpriore G.; Angell, C. Austen
  • Advanced Energy Materials, Vol. 5, Issue 12
  • DOI: 10.1002/aenm.201500271

Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage
journal, August 2014

  • Lu, Xiaochuan; Li, Guosheng; Kim, Jin Y.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5578

Ionic Liquids at Electrified Interfaces
journal, March 2014

  • Fedorov, Maxim V.; Kornyshev, Alexei A.
  • Chemical Reviews, Vol. 114, Issue 5
  • DOI: 10.1021/cr400374x

Liquid-Tin-Assisted Molten Salt Electrodeposition of Photoresponsive n-Type Silicon Films
journal, November 2017

  • Peng, Junjun; Yin, Huayi; Zhao, Ji
  • Advanced Functional Materials, Vol. 28, Issue 1
  • DOI: 10.1002/adfm.201703551

Challenges and obstacles in the development of sodium–air batteries
journal, December 2013


Review—Electrochemical Surface Finishing and Energy Storage Technology with Room-Temperature Haloaluminate Ionic Liquids and Mixtures
journal, January 2017

  • Tsuda, Tetsuya; Stafford, Gery R.; Hussey, Charles L.
  • Journal of The Electrochemical Society, Vol. 164, Issue 8
  • DOI: 10.1149/2.0021708jes

Low-Temperature Molten Salt Electrolytes for Membrane-Free Sodium Metal Batteries
journal, January 2015

  • Spatocco, Brian L.; Ouchi, Takanari; Lambotte, Guillaume
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0441514jes

Critical temperature and coexistence curve for aluminum bromide
journal, May 1968

  • Johnson, J. W.; Silva, W. J.; Cubicciotti, Daniel
  • The Journal of Physical Chemistry, Vol. 72, Issue 5
  • DOI: 10.1021/j100851a048

Molten iodide salt electrolyte for low-temperature low-cost sodium-based liquid metal battery
journal, November 2020


Challenges and perspectives on high and intermediate-temperature sodium batteries
journal, June 2017


The Interaction of Aluminum Bromide and Sodium Iodide
journal, August 1950

  • Daniel, J. L.; Gregory, N. W.
  • Journal of the American Chemical Society, Vol. 72, Issue 8
  • DOI: 10.1021/ja01164a507

Electrochemical Reactivity in Room-Temperature Ionic Liquids
journal, July 2008

  • Hapiot, Philippe; Lagrost, Corinne
  • Chemical Reviews, Vol. 108, Issue 7
  • DOI: 10.1021/cr0680686

Electrochemical Synthesis of Nanomaterials in Molten Salts: I. Synthesis of Tantalum Monoxide Nanoneedles
journal, January 2017

  • Kuznetsov, S. A.
  • Journal of The Electrochemical Society, Vol. 164, Issue 8
  • DOI: 10.1149/2.0261708jes

Sodium-Metal Halide and Sodium-Air Batteries
journal, June 2014


The system NaCl-AlCl3
journal, July 1974

  • Levin, Ernest M.; Kinney, J. F.; Wells, R. D.
  • Journal of Research of the National Bureau of Standards Section A: Physics and Chemistry, Vol. 78A, Issue 4
  • DOI: 10.6028/jres.078A.033

Electrochemical synthesis, morphological and structural characteristics of carbon nanomaterials produced in molten salts
journal, September 2016


A New Ionic Liquid Electrolyte Enhances the Conversion Efficiency of Dye-Sensitized Solar Cells
journal, December 2003

  • Wang, Peng; Zakeeruddin, Shaik M.; Moser, Jacques-E.
  • The Journal of Physical Chemistry B, Vol. 107, Issue 48
  • DOI: 10.1021/jp0355399

Separation behavior of nickel and cobalt in a LiCl-KCl-NiCl2 molten salt by electrorefining process
journal, June 2020


Next generation molten NaI batteries for grid scale energy storage
journal, August 2017


Toward Cost-Effective Manufacturing of Silicon Solar Cells: Electrodeposition of High-Quality Si Films in a CaCl 2 -based Molten Salt
journal, October 2017

  • Yang, Xiao; Ji, Li; Zou, Xingli
  • Angewandte Chemie International Edition, Vol. 56, Issue 47
  • DOI: 10.1002/anie.201707635

A Practical Beginner’s Guide to Cyclic Voltammetry
journal, November 2017

  • Elgrishi, Noémie; Rountree, Kelley J.; McCarthy, Brian D.
  • Journal of Chemical Education, Vol. 95, Issue 2
  • DOI: 10.1021/acs.jchemed.7b00361

Electrochemical Separation of Lanthanum Oxide in Molten FLiNaK Salt
journal, July 2020


Electrochemical Formation of a p–n Junction on Thin Film Silicon Deposited in Molten Salt
journal, November 2017

  • Zou, Xingli; Ji, Li; Yang, Xiao
  • Journal of the American Chemical Society, Vol. 139, Issue 45
  • DOI: 10.1021/jacs.7b09090

Ionic liquid doped polybenzimidazole membranes for high temperature Proton Exchange Membrane fuel cell applications
journal, January 2013


Tetraalkylammonium trifluoromethanesulfonates as supporting electrolytes
journal, December 1972

  • Rousseau, K.; Farrington, G. C.; Dolphin, D.
  • The Journal of Organic Chemistry, Vol. 37, Issue 24
  • DOI: 10.1021/jo00797a054

Direct determination of diffusion coefficients by chronoamperometry at microdisk electrodes
journal, June 1991

  • Denuault, Guy; Mirkin, Michael V.; Bard, Alien J.
  • Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, Vol. 308, Issue 1-2
  • DOI: 10.1016/0022-0728(91)85056-U

Low-Temperature Molten Sodium Batteries
journal, November 2020

  • Gross, Martha M.; Percival, Stephen J.; Small, Leo J.
  • ACS Applied Energy Materials, Vol. 3, Issue 11
  • DOI: 10.1021/acsaem.0c02385

Study of the Formation and Quick Growth of Thick Oxide Films Using Platinum Nanoelectrodes as a Model Electrocatalyst
journal, September 2014