DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tetraarylborate polymer networks as single-ion conducting solid electrolytes

Abstract

A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [3];  [3];  [5]
  1. Department of Chemistry, Massachusetts Institute of Technology, Cambridge, USA 02139
  2. Department of Chemistry, University of California, Berkeley, USA 94720-1462
  3. Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, USA 14853-1301
  4. Centre for Surface Chemistry and Catalysis, University of Leuven, 3001 Leuven, Belgium
  5. Department of Chemistry, University of California, Berkeley, USA 94720-1462, Division of Materials Sciences
Publication Date:
Research Org.:
Energy Frontier Research Centers (EFRC) (United States). Center for Gas Separations Relevant to Clean Energy Technologies (CGS); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1771814
Alternate Identifier(s):
OSTI ID: 1214440
Grant/Contract Number:  
SC0001015; unassigned; CHE-1413862
Resource Type:
Published Article
Journal Name:
Chemical Science
Additional Journal Information:
Journal Name: Chemical Science Journal Volume: 6 Journal Issue: 10; Journal ID: ISSN 2041-6520
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Van Humbeck, Jeffrey F., Aubrey, Michael L., Alsbaiee, Alaaeddin, Ameloot, Rob, Coates, Geoffrey W., Dichtel, William R., and Long, Jeffrey R. Tetraarylborate polymer networks as single-ion conducting solid electrolytes. United Kingdom: N. p., 2015. Web. doi:10.1039/C5SC02052B.
Van Humbeck, Jeffrey F., Aubrey, Michael L., Alsbaiee, Alaaeddin, Ameloot, Rob, Coates, Geoffrey W., Dichtel, William R., & Long, Jeffrey R. Tetraarylborate polymer networks as single-ion conducting solid electrolytes. United Kingdom. https://doi.org/10.1039/C5SC02052B
Van Humbeck, Jeffrey F., Aubrey, Michael L., Alsbaiee, Alaaeddin, Ameloot, Rob, Coates, Geoffrey W., Dichtel, William R., and Long, Jeffrey R. Mon . "Tetraarylborate polymer networks as single-ion conducting solid electrolytes". United Kingdom. https://doi.org/10.1039/C5SC02052B.
@article{osti_1771814,
title = {Tetraarylborate polymer networks as single-ion conducting solid electrolytes},
author = {Van Humbeck, Jeffrey F. and Aubrey, Michael L. and Alsbaiee, Alaaeddin and Ameloot, Rob and Coates, Geoffrey W. and Dichtel, William R. and Long, Jeffrey R.},
abstractNote = {A new family of solid polymer electrolytes based upon anionic tetrakis(phenyl)borate tetrahedral nodes and linear bis-alkyne linkers is reported. Sonogashira polymerizations using tetrakis(4-iodophenyl)borate, tetrakis(4-iodo-2,3,5,6-tetrafluorophenyl)borate and tetrakis(4-bromo-2,3,5,6-tetrafluorophenyl)borate delivered highly cross-linked polymer networks with both 1,4-diethynylbeznene and a tri(ethylene glycol) substituted derivative. Promising initial conductivity metrics have been observed, including high room temperature conductivities (up to 2.7 × 10-4 S cm-1), moderate activation energies (0.25–0.28 eV), and high lithium ion transport numbers (up to tLi+ = 0.93). Initial investigations into the effects of important materials parameters such as bulk morphology, porosity, fluorination, and other chemical modification, provide starting design parameters for further development of this new class of solid electrolytes.},
doi = {10.1039/C5SC02052B},
journal = {Chemical Science},
number = 10,
volume = 6,
place = {United Kingdom},
year = {Mon Sep 14 00:00:00 EDT 2015},
month = {Mon Sep 14 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/C5SC02052B

Citation Metrics:
Cited by: 78 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Nanoionics: ion transport and electrochemical storage in confined systems
journal, November 2005

  • Maier, J.
  • Nature Materials, Vol. 4, Issue 11, p. 805-815
  • DOI: 10.1038/nmat1513

Lithium Electrode Morphology during Cycling in Lithium Cells
journal, January 1988

  • Yoshimatsu, Isamu
  • Journal of The Electrochemical Society, Vol. 135, Issue 10
  • DOI: 10.1149/1.2095351

Issues and challenges facing rechargeable lithium batteries
journal, November 2001

  • Tarascon, J.-M.; Armand, M.
  • Nature, Vol. 414, Issue 6861, p. 359-367
  • DOI: 10.1038/35104644

Differences between polymer/salt and single ion conductor solid polymer electrolytes
journal, January 2013

  • Lin, Kan-Ju; Li, Katherine; Maranas, Janna K.
  • RSC Adv., Vol. 3, Issue 5
  • DOI: 10.1039/C2RA21644B

Molecular Tectonics. Selective Exchange of Cations in Porous Anionic Hydrogen-Bonded Networks Built from Derivatives of Tetraphenylborate
journal, April 2005

  • Malek, Nadia; Maris, Thierry; Simard, Michel
  • Journal of the American Chemical Society, Vol. 127, Issue 16
  • DOI: 10.1021/ja042233m

Review on gel polymer electrolytes for lithium batteries
journal, January 2006


Metal–air batteries: from oxygen reduction electrochemistry to cathode catalysts
journal, January 2012

  • Cheng, Fangyi; Chen, Jun
  • Chemical Society Reviews, Vol. 41, Issue 6, p. 2172-2192
  • DOI: 10.1039/c1cs15228a

High Surface Area Networks from Tetrahedral Monomers: Metal-Catalyzed Coupling, Thermal Polymerization, and “Click” Chemistry
journal, October 2010

  • Holst, James R.; Stöckel, Ev; Adams, Dave J.
  • Macromolecules, Vol. 43, Issue 20
  • DOI: 10.1021/ma101677t

High surface area amorphous microporous poly(aryleneethynylene) networks using tetrahedral carbon- and silicon-centred monomers
journal, January 2009

  • Stöckel, Ev; Wu, Xiaofeng; Trewin, Abbie
  • Chemical Communications, Vol. 0, Issue 2, p. 212-214
  • DOI: 10.1039/B815044C

Network formation mechanisms in conjugated microporous polymers
journal, January 2014

  • Laybourn, Andrea; Dawson, Robert; Clowes, Rob
  • Polym. Chem., Vol. 5, Issue 21
  • DOI: 10.1039/C4PY00647J

Electrochemical aspects of the generation of ramified metallic electrodeposits
journal, December 1990


Safety and reliability considerations for lithium batteries
journal, September 1997


Polymer Electrolytes
journal, July 2013


Review of gel-type polymer electrolytes for lithium-ion batteries
journal, February 1999


Conductivity and transference number measurements on polymer electrolytes
journal, September 1988


Ammonia Capture in Porous Organic Polymers Densely Functionalized with Brønsted Acid Groups
journal, January 2014

  • Van Humbeck, Jeffrey F.; McDonald, Thomas M.; Jing, Xiaofei
  • Journal of the American Chemical Society, Vol. 136, Issue 6, p. 2432-2440
  • DOI: 10.1021/ja4105478

Capacity Fade Mechanisms and Side Reactions in Lithium-Ion Batteries
journal, January 1998

  • Arora, Pankaj; White, Ralph E.; Doyle, Marc
  • Journal of The Electrochemical Society, Vol. 145, Issue 10, p. 3647-3667
  • DOI: 10.1149/1.1838857

Nonaqueous Liquid Electrolytes for Lithium-Based Rechargeable Batteries
journal, October 2004


The Impact of Elastic Deformation on Deposition Kinetics at Lithium/Polymer Interfaces
journal, January 2005

  • Monroe, Charles; Newman, John
  • Journal of The Electrochemical Society, Vol. 152, Issue 2
  • DOI: 10.1149/1.1850854

Effects of Novel Boric Acid Esters on Ion Transport Properties of Lithium Salts in Nonaqueous Electrolyte Solutions and Polymer Electrolytes
journal, December 2004

  • Tabata, Sei-ichiro; Hirakimoto, Takuro; Tokuda, Hiroyuki
  • The Journal of Physical Chemistry B, Vol. 108, Issue 50
  • DOI: 10.1021/jp048370n

Novel Polyanionic Solid Electrolytes with Weak Coulomb Traps and Controllable Caps and Spacers
journal, January 2002

  • Xu, Wu; Williams, Michael D.; Angell, C. Austen
  • Chemistry of Materials, Vol. 14, Issue 1
  • DOI: 10.1021/cm010699n

A porous diamond carbon framework: a new carbon allotrope with extremely high gas adsorption and mechanical properties
journal, January 2013

  • Huang, Ling; Xiang, Zhonghua; Cao, Dapeng
  • Journal of Materials Chemistry A, Vol. 1, Issue 12
  • DOI: 10.1039/c3ta10292k

Preparation of Potassium Alkynylaryltrifluoroborates from Haloaryltrifluoroborates via Sonogashira Coupling Reaction
journal, March 2010

  • Kim, Dong-Su; Ham, Jungyeob
  • Organic Letters, Vol. 12, Issue 5
  • DOI: 10.1021/ol100081v

Pentafluorophenylboranes: from obscurity to applications
journal, January 1997

  • Piers, Warren E.; Chivers, Tristram
  • Chemical Society Reviews, Vol. 26, Issue 5
  • DOI: 10.1039/cs9972600345

Local and overall ionic conductivity in nanocrystalline CaF2
journal, June 2000


Review on composite polymer electrolytes for lithium batteries
journal, July 2006


Microporous Poly(tri(4-ethynylphenyl)amine) Networks: Synthesis, Properties, and Atomistic Simulation
journal, April 2009

  • Jiang, Jia-Xing; Trewin, Abbie; Su, Fabing
  • Macromolecules, Vol. 42, Issue 7
  • DOI: 10.1021/ma802625d

Phospho-olivines as Positive-Electrode Materials for Rechargeable Lithium Batteries
journal, April 1997

  • Padhi, A. K.
  • Journal of The Electrochemical Society, Vol. 144, Issue 4, p. 1188-1194
  • DOI: 10.1149/1.1837571

Recent findings and prospects in the field of pure metals as negative electrodes for Li-ion batteries
journal, January 2007

  • Larcher, Dominique; Beattie, Shane; Morcrette, Mathieu
  • Journal of Materials Chemistry, Vol. 17, Issue 36
  • DOI: 10.1039/b705421c

A single-ion polymer electrolyte based on boronate for lithium ion batteries
journal, August 2012


Synthesis and Characterization of Network Type Single Ion Conductors
journal, March 2004

  • Sun, Xiao-Guang; Reeder, Craig L.; Kerr, John B.
  • Macromolecules, Vol. 37, Issue 6
  • DOI: 10.1021/ma035690g

Resolution of the Modulus versus Adhesion Dilemma in Solid Polymer Electrolytes for Rechargeable Lithium Metal Batteries
journal, January 2012

  • Stone, G. M.; Mullin, S. A.; Teran, A. A.
  • Journal of The Electrochemical Society, Vol. 159, Issue 3
  • DOI: 10.1149/2.030203jes

Beyond Intercalation-Based Li-Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions
journal, August 2010

  • Cabana, Jordi; Monconduit, Laure; Larcher, Dominique
  • Advanced Materials, Vol. 22, Issue 35
  • DOI: 10.1002/adma.201000717

Synthesis and Lithium Ion Conduction of Polysiloxane Single-Ion Conductors Containing Novel Weak-Binding Borates
journal, June 2012

  • Liang, Siwei; Choi, U. Hyeok; Liu, Wenjuan
  • Chemistry of Materials, Vol. 24, Issue 12
  • DOI: 10.1021/cm3005387

A New Palladium Precatalyst Allows for the Fast Suzuki−Miyaura Coupling Reactions of Unstable Polyfluorophenyl and 2-Heteroaryl Boronic Acids
journal, October 2010

  • Kinzel, Tom; Zhang, Yong; Buchwald, Stephen L.
  • Journal of the American Chemical Society, Vol. 132, Issue 40, p. 14073-14075
  • DOI: 10.1021/ja1073799

Suppression of Lithium Dendrite Growth Using Cross-Linked Polyethylene/Poly(ethylene oxide) Electrolytes: A New Approach for Practical Lithium-Metal Polymer Batteries
journal, May 2014

  • Khurana, Rachna; Schaefer, Jennifer L.; Archer, Lynden A.
  • Journal of the American Chemical Society, Vol. 136, Issue 20
  • DOI: 10.1021/ja502133j

Metal−Organic Frameworks Provide Large Negative Thermal Expansion Behavior
journal, October 2007

  • Han, Sang Soo; Goddard, William A.
  • The Journal of Physical Chemistry C, Vol. 111, Issue 42
  • DOI: 10.1021/jp075389s

Ceramic and polymeric solid electrolytes for lithium-ion batteries
journal, August 2010


Functional Materials for Rechargeable Batteries
journal, March 2011

  • Cheng, Fangyi; Liang, Jing; Tao, Zhanliang
  • Advanced Materials, Vol. 23, Issue 15
  • DOI: 10.1002/adma.201003587

A new single-ion polymer electrolyte based on polyvinyl alcohol for lithium ion batteries
journal, January 2013


An Anionic Microporous Polymer Network Prepared by the Polymerization of Weakly Coordinating Anions
journal, October 2013

  • Fischer, Sabrina; Schmidt, Johannes; Strauch, Peter
  • Angewandte Chemie International Edition, Vol. 52, Issue 46
  • DOI: 10.1002/anie.201303045

Mechanical properties of metal-organic frameworks: An indentation study on epitaxial thin films
journal, September 2012

  • Bundschuh, S.; Kraft, O.; Arslan, H. K.
  • Applied Physics Letters, Vol. 101, Issue 10
  • DOI: 10.1063/1.4751286

Thermodynamic analysis on energy densities of batteries
journal, January 2011

  • Zu, Chen-Xi; Li, Hong
  • Energy & Environmental Science, Vol. 4, Issue 8
  • DOI: 10.1039/c0ee00777c

Exploring polymeric lithium tartaric acid borate for thermally resistant polymer electrolyte of lithium batteries
journal, March 2013


Li-alloy based anode materials for Li secondary batteries
journal, January 2010

  • Park, Cheol-Min; Kim, Jae-Hun; Kim, Hansu
  • Chemical Society Reviews, Vol. 39, Issue 8, p. 3115-3141
  • DOI: 10.1039/b919877f

Onset of dendritic growth in lithium/polymer cells
journal, July 2001


Influence of Solvating Plasticizer on Ion Conduction of Polysiloxane Single-Ion Conductors
journal, April 2014

  • Choi, U. Hyeok; Liang, Siwei; O’Reilly, Michael V.
  • Macromolecules, Vol. 47, Issue 9
  • DOI: 10.1021/ma500146v

Porous Polymer Networks: Synthesis, Porosity, and Applications in Gas Storage/Separation
journal, November 2010

  • Lu, Weigang; Yuan, Daqiang; Zhao, Dan
  • Chemistry of Materials, Vol. 22, Issue 21, p. 5964-5972
  • DOI: 10.1021/cm1021068

Block copolymers in tomorrow's plastics
journal, January 2005

  • Ruzette, Anne-Valérie; Leibler, Ludwik
  • Nature Materials, Vol. 4, Issue 1
  • DOI: 10.1038/nmat1295

Works referencing / citing this record:

Engineered Transport in Microporous Materials and Membranes for Clean Energy Technologies
journal, January 2018

  • Li, Changyi; Meckler, Stephen M.; Smith, Zachary P.
  • Advanced Materials, Vol. 30, Issue 8
  • DOI: 10.1002/adma.201704953

A Single‐Ion Conducting Borate Network Polymer as a Viable Quasi‐Solid Electrolyte for Lithium Metal Batteries
journal, January 2020

  • Shin, Dong‐Myeong; Bachman, Jonathan E.; Taylor, Mercedes K.
  • Advanced Materials, Vol. 32, Issue 10
  • DOI: 10.1002/adma.201905771

A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Single‐Ion Li + Solid Electrolyte
journal, December 2018

  • Fischer, Sabrina; Roeser, Jérôme; Lin, Terri C.
  • Angewandte Chemie, Vol. 130, Issue 51
  • DOI: 10.1002/ange.201808885

Ionic Covalent Organic Frameworks with Spiroborate Linkage
journal, December 2015

  • Du, Ya; Yang, Haishen; Whiteley, Justin Michael
  • Angewandte Chemie International Edition, Vol. 55, Issue 5
  • DOI: 10.1002/anie.201509014

A Metal–Organic Framework with Tetrahedral Aluminate Sites as a Single‐Ion Li + Solid Electrolyte
journal, December 2018

  • Fischer, Sabrina; Roeser, Jérôme; Lin, Terri C.
  • Angewandte Chemie International Edition, Vol. 57, Issue 51
  • DOI: 10.1002/anie.201808885

Anionic porous polymers with tunable structures and catalytic properties
journal, January 2016

  • Zhao, Wuxue; Zhang, Fan; Yang, Lingyun
  • Journal of Materials Chemistry A, Vol. 4, Issue 39
  • DOI: 10.1039/c6ta04917f

Synthesis of tetraarylborates via tetralithio intermediates and the effect of polar functional groups and cations on their crystal structures
journal, January 2018

  • Tomaszewski, Patryk; Wiszniewski, Marcin; Serwatowski, Janusz
  • Dalton Transactions, Vol. 47, Issue 46
  • DOI: 10.1039/c8dt04068k

Efficient alkaloid capture from water using a charged porous organic polymer
journal, January 2018

  • Zhang, Qing-Mei; Wang, Zhen; Cheng, Guang
  • RSC Advances, Vol. 8, Issue 58
  • DOI: 10.1039/c8ra06499g

A promising bulky anion based lithium borate salt for lithium metal batteries
journal, January 2018

  • Qiao, Lixin; Cui, Zili; Chen, Bingbing
  • Chemical Science, Vol. 9, Issue 14
  • DOI: 10.1039/c8sc00041g

Revisiting polymeric single lithium-ion conductors as an organic route for all-solid-state lithium ion and metal batteries
journal, January 2019

  • Jeong, Kihun; Park, Sodam; Lee, Sang-Young
  • Journal of Materials Chemistry A, Vol. 7, Issue 5
  • DOI: 10.1039/c8ta09056d

A pre-synthetic strategy to construct single ion conductive covalent organic frameworks
journal, January 2020

  • Li, Juan; Zhang, Fu-Qiang; Li, Falian
  • Chemical Communications, Vol. 56, Issue 18
  • DOI: 10.1039/d0cc00454e

Block copolymers for supercapacitors, dielectric capacitors and batteries
journal, March 2019


Metal- and covalent-organic frameworks as solid-state electrolytes for metal-ion batteries
journal, July 2019

  • Miner, Elise M.; Dincă, Mircea
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 377, Issue 2149
  • DOI: 10.1098/rsta.2018.0225

Ion Transport in Solvent-Free, Crosslinked, Single-Ion Conducting Polymer Electrolytes for Post-Lithium Ion Batteries
journal, June 2018


Ionic Porous Organic Polymers Based on Functionalized Tetraarylborates
journal, June 2019

  • Tomaszewski, Patryk; Wiszniewski, Marcin; Gontarczyk, Krzysztof
  • Polymers, Vol. 11, Issue 6
  • DOI: 10.3390/polym11061070