DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer

Abstract

Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna–Matthews–Olson (FMO) pigment–protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4–1 and 4–2-1 pathways because the exciton 4–1 energy gap is vibronically coupled with a bacteriochlorophyll-a vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4–1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4–2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. Overall, this result shows how pigment–protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.

Authors:
ORCiD logo [1];  [1];  [1]; ORCiD logo [1];  [1];  [2];  [1];  [1];  [1];  [3];  [1]
  1. Department of Chemistry, The University of Chicago, Chicago, IL 60637,, The Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637,, The James Franck Institute, The University of Chicago, Chicago, IL 60637,
  2. The Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130,, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130,
  3. The Photosynthetic Antenna Research Center, Washington University in St. Louis, St. Louis, MO 63130,, Department of Biology, Washington University in St. Louis, St. Louis, MO 63130,, Department of Chemistry, Washington University in St. Louis, St. Louis, MO 63130
Publication Date:
Research Org.:
Washington Univ., St. Louis, MO (United States); Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); US Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF)
OSTI Identifier:
1770009
Alternate Identifier(s):
OSTI ID: 1850697
Grant/Contract Number:  
SC 0001035; SC0001035; SC0020131; FA9550-18-1-0099; DMR-1420709
Resource Type:
Published Article
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Additional Journal Information:
Journal Name: Proceedings of the National Academy of Sciences of the United States of America Journal Volume: 118 Journal Issue: 11; Journal ID: ISSN 0027-8424
Publisher:
Proceedings of the National Academy of Sciences
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 59 BASIC BIOLOGICAL SCIENCES; Science & Technology - Other Topics; quantum effects in biology; ultrafast spectroscopy; photosynthesis; excitonic energy transfer; vibronic coupling

Citation Formats

Higgins, Jacob S., Lloyd, Lawson T., Sohail, Sara H., Allodi, Marco A., Otto, John P., Saer, Rafael G., Wood, Ryan E., Massey, Sara C., Ting, Po-Chieh, Blankenship, Robert E., and Engel, Gregory S. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. United States: N. p., 2021. Web. doi:10.1073/pnas.2018240118.
Higgins, Jacob S., Lloyd, Lawson T., Sohail, Sara H., Allodi, Marco A., Otto, John P., Saer, Rafael G., Wood, Ryan E., Massey, Sara C., Ting, Po-Chieh, Blankenship, Robert E., & Engel, Gregory S. Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer. United States. https://doi.org/10.1073/pnas.2018240118
Higgins, Jacob S., Lloyd, Lawson T., Sohail, Sara H., Allodi, Marco A., Otto, John P., Saer, Rafael G., Wood, Ryan E., Massey, Sara C., Ting, Po-Chieh, Blankenship, Robert E., and Engel, Gregory S. Tue . "Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer". United States. https://doi.org/10.1073/pnas.2018240118.
@article{osti_1770009,
title = {Photosynthesis tunes quantum-mechanical mixing of electronic and vibrational states to steer exciton energy transfer},
author = {Higgins, Jacob S. and Lloyd, Lawson T. and Sohail, Sara H. and Allodi, Marco A. and Otto, John P. and Saer, Rafael G. and Wood, Ryan E. and Massey, Sara C. and Ting, Po-Chieh and Blankenship, Robert E. and Engel, Gregory S.},
abstractNote = {Photosynthetic species evolved to protect their light-harvesting apparatus from photoxidative damage driven by intracellular redox conditions or environmental conditions. The Fenna–Matthews–Olson (FMO) pigment–protein complex from green sulfur bacteria exhibits redox-dependent quenching behavior partially due to two internal cysteine residues. Here, we show evidence that a photosynthetic complex exploits the quantum mechanics of vibronic mixing to activate an oxidative photoprotective mechanism. We use two-dimensional electronic spectroscopy (2DES) to capture energy transfer dynamics in wild-type and cysteine-deficient FMO mutant proteins under both reducing and oxidizing conditions. Under reducing conditions, we find equal energy transfer through the exciton 4–1 and 4–2-1 pathways because the exciton 4–1 energy gap is vibronically coupled with a bacteriochlorophyll-a vibrational mode. Under oxidizing conditions, however, the resonance of the exciton 4–1 energy gap is detuned from the vibrational mode, causing excitons to preferentially steer through the indirect 4–2-1 pathway to increase the likelihood of exciton quenching. We use a Redfield model to show that the complex achieves this effect by tuning the site III energy via the redox state of its internal cysteine residues. Overall, this result shows how pigment–protein complexes exploit the quantum mechanics of vibronic coupling to steer energy transfer.},
doi = {10.1073/pnas.2018240118},
journal = {Proceedings of the National Academy of Sciences of the United States of America},
number = 11,
volume = 118,
place = {United States},
year = {Tue Mar 09 00:00:00 EST 2021},
month = {Tue Mar 09 00:00:00 EST 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1073/pnas.2018240118

Save / Share:

Works referenced in this record:

Exciton Structure and Energy Transfer in the Fenna–Matthews–Olson Complex
journal, April 2016

  • Thyrhaug, Erling; Žídek, Karel; Dostál, Jakub
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 9
  • DOI: 10.1021/acs.jpclett.6b00534

Effect of Spectral Density Shapes on the Excitonic Structure and Dynamics of the Fenna–Matthews–Olson Trimer from Chlorobaculum tepidum
journal, August 2016

  • Kell, Adam; Blankenship, Robert E.; Jankowiak, Ryszard
  • The Journal of Physical Chemistry A, Vol. 120, Issue 31
  • DOI: 10.1021/acs.jpca.6b03107

Redox Conditions Affect Ultrafast Exciton Transport in Photosynthetic Pigment–Protein Complexes
journal, December 2017

  • Allodi, Marco A.; Otto, John P.; Sohail, Sara H.
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 1
  • DOI: 10.1021/acs.jpclett.7b02883

Electron Transfer May Occur in the Chlorosome Envelope:  The CsmI and CsmJ Proteins of Chlorosomes Are 2Fe-2S Ferredoxins ,
journal, January 2001

  • Vassilieva, Elena V.; Antonkine, Mikhail L.; Zybailov, Boris L.
  • Biochemistry, Vol. 40, Issue 2
  • DOI: 10.1021/bi001917d

Chlorosome antenna complexes from green photosynthetic bacteria
journal, June 2013


Influence of phonons on exciton transfer dynamics: comparison of the Redfield, Förster, and modified Redfield equations
journal, January 2002


Vibronic coherence in oxygenic photosynthesis
journal, July 2014

  • Fuller, Franklin D.; Pan, Jie; Gelzinis, Andrius
  • Nature Chemistry, Vol. 6, Issue 8
  • DOI: 10.1038/nchem.2005

Using coherence to enhance function in chemical and biophysical systems
journal, March 2017

  • Scholes, Gregory D.; Fleming, Graham R.; Chen, Lin X.
  • Nature, Vol. 543, Issue 7647
  • DOI: 10.1038/nature21425

Energy landscape of the intact and destabilized FMO antennas from C. tepidum and the L122Q mutant: Low temperature spectroscopy and modeling study
journal, March 2018

  • Khmelnitskiy, Anton; Kell, Adam; Reinot, Tonu
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1859, Issue 3
  • DOI: 10.1016/j.bbabio.2017.11.008

Cysteine-mediated mechanism disrupts energy transfer to prevent photooxidation
journal, July 2016

  • Rolczynski, Brian S.; Navotnaya, Polina; Sussman, Hallie R.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 31
  • DOI: 10.1073/pnas.1609372113

In situ mapping of the energy flow through the entire photosynthetic apparatus
journal, May 2016

  • Dostál, Jakub; Pšenčík, Jakub; Zigmantas, Donatas
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2525

How Proteins Trigger Excitation Energy Transfer in the FMO Complex of Green Sulfur Bacteria
journal, October 2006


On the Shape of the Phonon Spectral Density in Photosynthetic Complexes
journal, June 2013

  • Kell, Adam; Feng, Ximao; Reppert, Mike
  • The Journal of Physical Chemistry B, Vol. 117, Issue 24
  • DOI: 10.1021/jp405094p

Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems
journal, April 2007

  • Engel, Gregory S.; Calhoun, Tessa R.; Read, Elizabeth L.
  • Nature, Vol. 446, Issue 7137
  • DOI: 10.1038/nature05678

Mechanistic Regimes of Vibronic Transport in a Heterodimer and the Design Principle of Incoherent Vibronic Transport in Phycobiliproteins
journal, April 2018

  • Bennett, Doran I. G.; Malý, Pavel; Kreisbeck, Christoph
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 10
  • DOI: 10.1021/acs.jpclett.8b00844

Environment-assisted quantum walks in photosynthetic energy transfer
journal, November 2008

  • Mohseni, Masoud; Rebentrost, Patrick; Lloyd, Seth
  • The Journal of Chemical Physics, Vol. 129, Issue 17
  • DOI: 10.1063/1.3002335

Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins
journal, June 2014

  • Harrop, Stephen J.; Wilk, Krystyna E.; Dinshaw, Rayomond
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 26
  • DOI: 10.1073/pnas.1402538111

Single-Shot Gradient-Assisted Photon Echo Electronic Spectroscopy
journal, April 2011

  • Harel, Elad; Fidler, Andrew F.; Engel, Gregory S.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 16
  • DOI: 10.1021/jp107022f

Hole hopping through tyrosine/tryptophan chains protects proteins from oxidative damage
journal, July 2015

  • Gray, Harry B.; Winkler, Jay R.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 35
  • DOI: 10.1073/pnas.1512704112

Mapping the ultrafast flow of harvested solar energy in living photosynthetic cells
journal, October 2017


Perturbation of bacteriochlorophyll molecules in Fenna–Matthews–Olson protein complexes through mutagenesis of cysteine residues
journal, September 2016

  • Saer, Rafael; Orf, Gregory S.; Lu, Xun
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1857, Issue 9
  • DOI: 10.1016/j.bbabio.2016.04.007

Evidence for a cysteine-mediated mechanism of excitation energy regulation in a photosynthetic antenna complex
journal, June 2016

  • Orf, Gregory S.; Saer, Rafael G.; Niedzwiedzki, Dariusz M.
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 31
  • DOI: 10.1073/pnas.1603330113

Reevaluating the mechanism of excitation energy regulation in iron-starved cyanobacteria
journal, March 2017

  • Chen, Hui-Yuan S.; Liberton, Michelle; Pakrasi, Himadri B.
  • Biochimica et Biophysica Acta (BBA) - Bioenergetics, Vol. 1858, Issue 3
  • DOI: 10.1016/j.bbabio.2017.01.001

Crystal structure of spinach major light-harvesting complex at 2.72 Å resolution
journal, March 2004

  • Liu, Zhenfeng; Yan, Hanchi; Wang, Kebin
  • Nature, Vol. 428, Issue 6980
  • DOI: 10.1038/nature02373

A thermophilic green sulfur bacterium from New Zealand hot springs, Chlorobium tepidum sp. nov.
journal, August 1991

  • Wahlund, Thomas M.; Woese, Carl R.; Castenholz, Richard W.
  • Archives of Microbiology, Vol. 156, Issue 2
  • DOI: 10.1007/BF00290978

Quantum coherences reveal excited-state dynamics in biophysical systems
journal, June 2019


Two-dimensional spectroscopy of electronic couplings in photosynthesis
journal, March 2005

  • Brixner, Tobias; Stenger, Jens; Vaswani, Harsha M.
  • Nature, Vol. 434, Issue 7033
  • DOI: 10.1038/nature03429

Long-lived quantum coherence in photosynthetic complexes at physiological temperature
journal, July 2010

  • Panitchayangkoon, G.; Hayes, D.; Fransted, K. A.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 29
  • DOI: 10.1073/pnas.1005484107

Static Disorder in Excitation Energies of the Fenna–Matthews–Olson Protein: Structure-Based Theory Meets Experiment
journal, November 2020

  • Chaillet, Marten L.; Lengauer, Florian; Adolphs, Julian
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 24
  • DOI: 10.1021/acs.jpclett.0c03123

Correlated Protein Environments Drive Quantum Coherence Lifetimes in Photosynthetic Pigment-Protein Complexes
journal, January 2018


The Role of Resonant Vibrations in Electronic Energy Transfer
journal, March 2016

  • Malý, Pavel; Somsen, Oscar J. G.; Novoderezhkin, Vladimir I.
  • ChemPhysChem, Vol. 17, Issue 9
  • DOI: 10.1002/cphc.201500965

Product branching ratios in simple gas phase reactions
journal, January 2007

  • Seakins, Paul W.
  • Annual Reports Section "C" (Physical Chemistry), Vol. 103
  • DOI: 10.1039/b605650b

Identification and characterization of diverse coherences in the Fenna–Matthews–Olson complex
journal, May 2018

  • Thyrhaug, Erling; Tempelaar, Roel; Alcocer, Marcelo J. P.
  • Nature Chemistry, Vol. 10, Issue 7
  • DOI: 10.1038/s41557-018-0060-5

Membrane orientation of the FMO antenna protein from Chlorobaculum tepidum as determined by mass spectrometry-based footprinting
journal, April 2009

  • Wen, J.; Zhang, H.; Gross, M. L.
  • Proceedings of the National Academy of Sciences, Vol. 106, Issue 15
  • DOI: 10.1073/pnas.0901691106

[2Fe-2S] Proteins in Chlorosomes: CsmI and CsmJ Participate in Light-Dependent Control of Energy Transfer in Chlorosomes of Chlorobaculum tepidum
journal, February 2013

  • Li, Hui; Frigaard, Niels-Ulrik; Bryant, Donald A.
  • Biochemistry, Vol. 52, Issue 8
  • DOI: 10.1021/bi301454g

Quantum coherence in photosynthesis for efficient solar-energy conversion
journal, July 2014

  • Romero, Elisabet; Augulis, Ramunas; Novoderezhkin, Vladimir I.
  • Nature Physics, Vol. 10, Issue 9
  • DOI: 10.1038/nphys3017

Communication: Broad manifold of excitonic states in light-harvesting complex 1 promotes efficient unidirectional energy transfer in vivo
journal, October 2017

  • Sohail, Sara H.; Dahlberg, Peter D.; Allodi, Marco A.
  • The Journal of Chemical Physics, Vol. 147, Issue 13
  • DOI: 10.1063/1.4999057

Real-time mapping of electronic structure with single-shot two-dimensional electronic spectroscopy
journal, September 2010

  • Harel, E.; Fidler, A. F.; Engel, G. S.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 38
  • DOI: 10.1073/pnas.1007579107

Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer
journal, July 2017

  • Duan, Hong-Guang; Prokhorenko, Valentyn I.; Cogdell, Richard J.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 32
  • DOI: 10.1073/pnas.1702261114

The Rise of Radicals in Bioinorganic Chemistry
journal, July 2016

  • Gray, Harry B.; Winkler, Jay R.
  • Israel Journal of Chemistry, Vol. 56, Issue 9-10
  • DOI: 10.1002/ijch.201600069

Quantum biology revisited
journal, April 2020

  • Cao, Jianshu; Cogdell, Richard J.; Coker, David F.
  • Science Advances, Vol. 6, Issue 14
  • DOI: 10.1126/sciadv.aaz4888

Chlorophyll arrangement in a bacteriochlorophyll protein from Chlorobium limicola
journal, December 1975

  • Fenna, R. E.; Matthews, B. W.
  • Nature, Vol. 258, Issue 5536
  • DOI: 10.1038/258573a0

Local protein solvation drives direct down-conversion in phycobiliprotein PC645 via incoherent vibronic transport
journal, March 2018

  • Blau, Samuel M.; Bennett, Doran I. G.; Kreisbeck, Christoph
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 15
  • DOI: 10.1073/pnas.1800370115

Elucidation of near-resonance vibronic coherence lifetimes by nonadiabatic electronic-vibrational state character mixing
journal, August 2018

  • Yeh, Shu-Hao; Hoehn, Ross D.; Allodi, Marco A.
  • Proceedings of the National Academy of Sciences, Vol. 116, Issue 37
  • DOI: 10.1073/pnas.1701390115

The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes
journal, January 2013

  • Chin, A. W.; Prior, J.; Rosenbach, R.
  • Nature Physics, Vol. 9, Issue 2
  • DOI: 10.1038/nphys2515

Multiple antioxidant proteins protect Chlorobaculum tepidum against oxygen and reactive oxygen species
journal, September 2009

  • Li, Hui; Jubelirer, Sara; Garcia Costas, Amaya M.
  • Archives of Microbiology, Vol. 191, Issue 11
  • DOI: 10.1007/s00203-009-0514-7

Exciton Simulations of Optical Spectra of the FMO Complex from the Green Sulfur Bacterium Chlorobium tepidum at 6 K
journal, November 1998

  • Vulto, Simone I. E.; de Baat, Michiel A.; Louwe, Robert J. W.
  • The Journal of Physical Chemistry B, Vol. 102, Issue 47
  • DOI: 10.1021/jp982095l

Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis
journal, January 2018

  • Maiuri, Margherita; Ostroumov, Evgeny E.; Saer, Rafael G.
  • Nature Chemistry, Vol. 10, Issue 2
  • DOI: 10.1038/nchem.2910