DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Revealing and Elucidating ALD-Derived Control of Lithium Plating Microstructure

Abstract

Abstract The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO 2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO 2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO 2 , a Li x TiO 2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO 2 ), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm −2 . This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation controlmore » and suggests new possibilities for future ALD‐synthesized nucleation layers.« less

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [2];  [1]
  1. Stanford Univ., CA (United States)
  2. Stanford Univ., CA (United States); SLAC National Accelerator Lab., Menlo Park, CA (United States). Stanford Institute for Materials and Energy Science (SIMES)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); USDOE Office of Energy Efficiency and Renewable Energy (EERE); National Science Foundation (NSF)
OSTI Identifier:
1769887
Alternate Identifier(s):
OSTI ID: 1804528
Grant/Contract Number:  
AC02-76SF00515; SC0004782; ECCS‐1542152; DE‐SC0004782
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Energy Materials
Additional Journal Information:
Journal Volume: 10; Journal Issue: 44; Journal ID: ISSN 1614-6832
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; atomic layer deposition; lithium metal; morphology; thin films; titanium dioxide

Citation Formats

Oyakhire, Solomon T., Huang, William, Wang, Hansen, Boyle, David T., Schneider, Joel R., de Paula, Camila, Wu, Yecun, Cui, Yi, and Bent, Stacey F. Revealing and Elucidating ALD-Derived Control of Lithium Plating Microstructure. United States: N. p., 2020. Web. doi:10.1002/aenm.202002736.
Oyakhire, Solomon T., Huang, William, Wang, Hansen, Boyle, David T., Schneider, Joel R., de Paula, Camila, Wu, Yecun, Cui, Yi, & Bent, Stacey F. Revealing and Elucidating ALD-Derived Control of Lithium Plating Microstructure. United States. https://doi.org/10.1002/aenm.202002736
Oyakhire, Solomon T., Huang, William, Wang, Hansen, Boyle, David T., Schneider, Joel R., de Paula, Camila, Wu, Yecun, Cui, Yi, and Bent, Stacey F. Sun . "Revealing and Elucidating ALD-Derived Control of Lithium Plating Microstructure". United States. https://doi.org/10.1002/aenm.202002736. https://www.osti.gov/servlets/purl/1769887.
@article{osti_1769887,
title = {Revealing and Elucidating ALD-Derived Control of Lithium Plating Microstructure},
author = {Oyakhire, Solomon T. and Huang, William and Wang, Hansen and Boyle, David T. and Schneider, Joel R. and de Paula, Camila and Wu, Yecun and Cui, Yi and Bent, Stacey F.},
abstractNote = {Abstract The practical implementation of Li metal batteries is hindered by difficulties in controlling the Li metal plating microstructure. While previous atomic layer deposition (ALD) studies have focused on directly coating Li metal with thin films for the passivation of the electrode–electrolyte interface, a different approach is adopted, situating the ALD film beneath Li metal and directly on the copper current collector. A mechanistic explanation for this simple strategy of controlling the Li metal plating microstructure using TiO 2 grown on copper foil by ALD is presented. In contrast to previous studies where ALD‐grown layers act as artificial interphases, this TiO 2 layer resides at the copper–Li metal interface, acting as a nucleation layer to improve the Li metal plating morphology. Upon lithiation of TiO 2 , a Li x TiO 2 complex forms; this alloy provides a lithiophilic surface layer that enables uniform and reversible Li plating. The reversibility of lithium deposition is evident from the champion cell (5 nm TiO 2 ), which displays an average Coulombic efficiency (CE) of 96% after 150 cycles at a moderate current density of 1 mA cm −2 . This simple approach provides the first account of the mechanism of ALD‐derived Li nucleation control and suggests new possibilities for future ALD‐synthesized nucleation layers.},
doi = {10.1002/aenm.202002736},
journal = {Advanced Energy Materials},
number = 44,
volume = 10,
place = {United States},
year = {Sun Oct 11 00:00:00 EDT 2020},
month = {Sun Oct 11 00:00:00 EDT 2020}
}

Works referenced in this record:

Favorable Lithium Nucleation on Lithiophilic Framework Porphyrin for Dendrite-Free Lithium Metal Anodes
journal, January 2019


Correlating Structure and Function of Battery Interphases at Atomic Resolution Using Cryoelectron Microscopy
journal, October 2018


Challenges for Rechargeable Li Batteries
journal, February 2010

  • Goodenough, John B.; Kim, Youngsik
  • Chemistry of Materials, Vol. 22, Issue 3, p. 587-603
  • DOI: 10.1021/cm901452z

Electrolyte additive enabled fast charging and stable cycling lithium metal batteries
journal, March 2017


Single-Ion Conducting Polymer Electrolytes for Lithium Metal Polymer Batteries that Operate at Ambient Temperature
journal, September 2016


Enhanced Stability of Li Metal Anodes by Synergetic Control of Nucleation and the Solid Electrolyte Interphase
journal, September 2019

  • Peng, Zhe; Song, Junhua; Huai, Liyuan
  • Advanced Energy Materials, Vol. 9, Issue 42
  • DOI: 10.1002/aenm.201901764

Lithiophilic Faceted Cu(100) Surfaces: High Utilization of Host Surface and Cavities for Lithium Metal Anodes
journal, March 2019

  • Gu, Yu; Xu, Hong‐Yu; Zhang, Xia‐Guang
  • Angewandte Chemie International Edition, Vol. 58, Issue 10
  • DOI: 10.1002/anie.201812523

Synergistic Effect of 3D Current Collectors and ALD Surface Modification for High Coulombic Efficiency Lithium Metal Anodes
journal, December 2018

  • Chen, Kuan-Hung; Sanchez, Adrian J.; Kazyak, Eric
  • Advanced Energy Materials, Vol. 9, Issue 4
  • DOI: 10.1002/aenm.201802534

High-performance lithium battery anodes using silicon nanowires
journal, December 2007

  • Chan, Candace K.; Peng, Hailin; Liu, Gao
  • Nature Nanotechnology, Vol. 3, Issue 1, p. 31-35
  • DOI: 10.1038/nnano.2007.411

An Artificial Solid Electrolyte Interphase Layer for Stable Lithium Metal Anodes
journal, December 2015


Self-smoothing anode for achieving high-energy lithium metal batteries under realistic conditions
journal, April 2019


Strong texturing of lithium metal in batteries
journal, October 2017

  • Shi, Feifei; Pei, Allen; Vailionis, Arturas
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 46
  • DOI: 10.1073/pnas.1708224114

Designing polymers for advanced battery chemistries
journal, April 2019


Promises and challenges of nanomaterials for lithium-based rechargeable batteries
journal, June 2016


Protected Lithium-Metal Anodes in Batteries: From Liquid to Solid
journal, July 2017


Natural SEI-Inspired Dual-Protective Layers via Atomic/Molecular Layer Deposition for Long-Life Metallic Lithium Anode
journal, November 2019


Non-encapsulation approach for high-performance Li–S batteries through controlled nucleation and growth
journal, September 2017


Lithium metal anodes for rechargeable batteries
journal, January 2014

  • Xu, Wu; Wang, Jiulin; Ding, Fei
  • Energy Environ. Sci., Vol. 7, Issue 2
  • DOI: 10.1039/C3EE40795K

The Li-Ion Rechargeable Battery: A Perspective
journal, January 2013

  • Goodenough, John B.; Park, Kyu-Sung
  • Journal of the American Chemical Society, Vol. 135, Issue 4
  • DOI: 10.1021/ja3091438

Layered reduced graphene oxide with nanoscale interlayer gaps as a stable host for lithium metal anodes
journal, March 2016

  • Lin, Dingchang; Liu, Yayuan; Liang, Zheng
  • Nature Nanotechnology, Vol. 11, Issue 7
  • DOI: 10.1038/nnano.2016.32

Robust Metallic Lithium Anode Protection by the Molecular-Layer-Deposition Technique
journal, March 2018


Improved Cycle Life and Stability of Lithium Metal Anodes through Ultrathin Atomic Layer Deposition Surface Treatments
journal, September 2015


Facet selectivity of Cu current collector for Li electrodeposition
journal, May 2019


Mobile Small Polarons Qualitatively Explain Conductivity in Lithium Titanium Oxide Battery Electrodes
journal, March 2020

  • Kick, Matthias; Grosu, Cristina; Schuderer, Markus
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 7
  • DOI: 10.1021/acs.jpclett.0c00568

Robust Pinhole-free Li 3 N Solid Electrolyte Grown from Molten Lithium
journal, December 2017


Structural properties of the titanium dioxide thin films grown by atomic layer deposition at various numbers of reaction cycles
journal, October 2010


Nanoscale Nucleation and Growth of Electrodeposited Lithium Metal
journal, January 2017


Reviving the lithium metal anode for high-energy batteries
journal, March 2017

  • Lin, Dingchang; Liu, Yayuan; Cui, Yi
  • Nature Nanotechnology, Vol. 12, Issue 3
  • DOI: 10.1038/nnano.2017.16

Chemical Dealloying Derived 3D Porous Current Collector for Li Metal Anodes
journal, May 2016


Next-Generation Lithium Metal Anode Engineering via Atomic Layer Deposition
journal, May 2015


An Ultrastrong Double-Layer Nanodiamond Interface for Stable Lithium Metal Anodes
journal, August 2018


A Novel Organic “Polyurea” Thin Film for Ultralong-Life Lithium-Metal Anodes via Molecular-Layer Deposition
journal, December 2018


Lithiophilic 3D Nanoporous Nitrogen-Doped Graphene for Dendrite-Free and Ultrahigh-Rate Lithium-Metal Anodes
journal, November 2018


Non-flammable electrolyte enables Li-metal batteries with aggressive cathode chemistries
journal, July 2018


Improving cyclability of Li metal batteries at elevated temperatures and its origin revealed by cryo-electron microscopy
journal, July 2019


Stable artificial solid electrolyte interphase films for lithium metal anode via metal–organic frameworks cemented by polyvinyl alcohol
journal, January 2020

  • Fan, Lishuang; Guo, Zhikun; Zhang, Yu
  • Journal of Materials Chemistry A, Vol. 8, Issue 1
  • DOI: 10.1039/C9TA10405D

Conformal Lithium Fluoride Protection Layer on Three-Dimensional Lithium by Nonhazardous Gaseous Reagent Freon
journal, May 2017


Tuning defects in oxides at room temperature by lithium reduction
journal, April 2018


The path towards sustainable energy
journal, December 2016

  • Chu, Steven; Cui, Yi; Liu, Nian
  • Nature Materials, Vol. 16, Issue 1
  • DOI: 10.1038/nmat4834

Design principles for electrolytes and interfaces for stable lithium-metal batteries
journal, September 2016


TiO 2 as an active or supplemental material for lithium batteries
journal, January 2016

  • Song, Taeseup; Paik, Ungyu
  • Journal of Materials Chemistry A, Vol. 4, Issue 1
  • DOI: 10.1039/C5TA06888F

Fluoroethylene Carbonate Additives to Render Uniform Li Deposits in Lithium Metal Batteries
journal, January 2017

  • Zhang, Xue-Qiang; Cheng, Xin-Bing; Chen, Xiang
  • Advanced Functional Materials, Vol. 27, Issue 10
  • DOI: 10.1002/adfm.201605989

Nanoscale Elemental Mapping of Intact Solid–Liquid Interfaces and Reactive Materials in Energy Devices Enabled by Cryo-FIB/SEM
journal, March 2020


Preparation and electrochemical properties of Ag-modified TiO2 nanotube anode material for lithium–ion battery
journal, March 2007


Atomic structure of sensitive battery materials and interfaces revealed by cryo–electron microscopy
journal, October 2017


Surface Fluorination of Reactive Battery Anode Materials for Enhanced Stability
journal, August 2017

  • Zhao, Jie; Liao, Lei; Shi, Feifei
  • Journal of the American Chemical Society, Vol. 139, Issue 33
  • DOI: 10.1021/jacs.7b05251

A Dynamic, Electrolyte-Blocking, and Single-Ion-Conductive Network for Stable Lithium-Metal Anodes
journal, November 2019


A Review of Solid Electrolyte Interphases on Lithium Metal Anode
journal, November 2015


Stable lithium electrodeposition in liquid and nanoporous solid electrolytes
journal, August 2014

  • Lu, Yingying; Tu, Zhengyuan; Archer, Lynden A.
  • Nature Materials, Vol. 13, Issue 10
  • DOI: 10.1038/nmat4041

High rate and stable cycling of lithium metal anode
journal, February 2015

  • Qian, Jiangfeng; Henderson, Wesley A.; Xu, Wu
  • Nature Communications, Vol. 6, Issue 1
  • DOI: 10.1038/ncomms7362