DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of CMOS strip sensor for future silicon tracker

Abstract

Monolithic silicon sensors developed with High-Voltage CMOS (HV-CMOS) processes have become highly attractive for charged particle tracking. Compared with the standard CMOS sensors, HV-CMOS sensors can provide larger and deeper depletion regions that lead to larger signals and faster charge collection. They can provide high position resolution, low material budget, high radiation hardness and low cost that are desirable for high performance tracking in harsh collision environment. Various studies have been conducted to explore the technology feasibility for the large-area tracking systems at future collider experiments. CHESS (CMOS HV/HR Evaluation for Strip Sensor) sensor series have been developed as an alternative solution to the conventional silicon micro-strip detectors for the ATLAS inner tracker upgrade. The first prototype (named CHESS1) was to evaluate the diode geometry and the in-pixel analog electronics. Obtained test results were used to optimize the second prototype (named CHESS2). CHESS2 was implemented with a full digital readout architecture and realized as a full reticle sized monolithic sensor. Here, the basic characteristics of the CHESS2 prototype sensors and their performance in response to different input signals are presented.

Authors:
 [1];  [2];  [3];  [4];  [5];  [6];  [6];  [5];  [4];  [7];  [5];  [8];  [1];  [9];  [8];  [9];  [8];  [10];  [3];  [11] more »;  [3];  [11];  [3];  [12];  [8];  [3];  [13];  [14];  [15];  [4];  [4];  [16];  [8];  [13];  [17];  [2];  [17];  [13];  [5];  [3];  [18];  [19];  [20];  [21];  [4];  [10];  [18];  [4];  [8];  [8];  [8];  [14];  [3];  [4];  [17];  [12];  [8];  [8];  [9];  [4];  [3];  [22];  [23];  [9];  [9];  [17];  [22] « less
  1. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); Univ. of Chinese Academy of Sciences, Beijing (China)
  2. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP); State Key Lab. of Particle Detection and Electronics, Beijing (China)
  3. Univ. of California, Santa Cruz, CA (United States)
  4. Univ. of Oxford (United Kingdom)
  5. Univ. of Glasgow, Scotland (United Kingdom)
  6. Univ. of Geneva (Switzerland)
  7. Univ. of Liverpool (United Kingdom); European Organization for Nuclear Research (CERN), Geneva (Switzerland)
  8. SLAC National Accelerator Lab., Menlo Park, CA (United States)
  9. Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)
  10. Karlsruhe Inst. of Technology (KIT) (Germany)
  11. Univ. of British Columbia, Vancouver, BC (Canada)
  12. Deutsches Elektronen-Synchrotron (DESY), Hamburg (Germany)
  13. Jozef Stefan Inst. (IJS), Ljubljana (Slovenia)
  14. Univ. of New Mexico, Albuquerque, NM (United States)
  15. Univ. of Cambridge (United Kingdom)
  16. Univ. of Oxford (United Kingdom); Univ. of Glasgow, Scotland (United Kingdom)
  17. Chinese Academy of Sciences (CAS), Beijing (China). Inst. of High Energy Physics (IHEP)
  18. Univ. of Oxford (United Kingdom); Science and Technology Facilities Council (STFC), Oxford (United Kingdom). Rutherford Appleton Lab. (RAL)
  19. Univ. of Liverpool (United Kingdom); Univ. of Geneva (Switzerland)
  20. Jozef Stefan Inst. (IJS), Ljubljana (Slovenia); Univ. of Ljubljana (Slovenia)
  21. Lancaster Univ. (United Kingdom)
  22. Argonne National Lab. (ANL), Argonne, IL (United States)
  23. Univ. College London (United Kingdom)
Publication Date:
Research Org.:
SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Key Programme for S&T Research and Development; Chinese Academy of Sciences; Science and Technology Facilities Council (STFC); European Commission (EC)
OSTI Identifier:
1768629
Alternate Identifier(s):
OSTI ID: 1648375; OSTI ID: 1838932
Grant/Contract Number:  
AC02-76SF00515; SC0010107; 2016YFA0400101; 262025; AC02-06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment
Additional Journal Information:
Journal Volume: 981; Journal ID: ISSN 0168-9002
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
46 INSTRUMENTATION RELATED TO NUCLEAR SCIENCE AND TECHNOLOGY; monolithic silicon sensor; high-voltage CMOS; CHESS; large-area tracking system

Citation Formats

Han, Y., Zhu, H., Affolder, A., Arndt, K., Bates, R., Benoit, M., Di Bello, F., Blue, A., Bortoletto, D., Buckland, M., Buttar, C., Caragiulo, P., Chen, Y., Das, D., Doering, D., Dopke, J., Dragone, A., Ehrler, F., Fadeyev, V., Fedorko, W., Galloway, Z., Gay, C., Grabas, H., Gregor, I. M., Grenier, P., Grillo, A., Hiti, B., Hoeferkamp, M., Hommels, L. B.A., Huffman, T., John, J., Kanisauskas, K., Kenney, C., Kramberger, G., Liu, P., Lu, W., Liang, Z., Mandić, I., Maneuski, D., Martinez-Mckinney, F., McMahon, S., Meng, L., Mikuz̆, M., Muenstermann, D., Nickerson, R., Peric, I., Phillips, P., Plackett, R., Rubbo, F., Ruckman, L., Segal, J., Seidel, S., Seiden, A., Shipsey, I., Song, W., Stanitzki, M., Su, D., Tamma, C., Turchetta, R., Vigani, L., Volk, J., Wang, R., Warren, M., Wilson, F., Worm, S., Xiu, Q., and Zhang, J. Study of CMOS strip sensor for future silicon tracker. United States: N. p., 2020. Web. doi:10.1016/j.nima.2020.164520.
Han, Y., Zhu, H., Affolder, A., Arndt, K., Bates, R., Benoit, M., Di Bello, F., Blue, A., Bortoletto, D., Buckland, M., Buttar, C., Caragiulo, P., Chen, Y., Das, D., Doering, D., Dopke, J., Dragone, A., Ehrler, F., Fadeyev, V., Fedorko, W., Galloway, Z., Gay, C., Grabas, H., Gregor, I. M., Grenier, P., Grillo, A., Hiti, B., Hoeferkamp, M., Hommels, L. B.A., Huffman, T., John, J., Kanisauskas, K., Kenney, C., Kramberger, G., Liu, P., Lu, W., Liang, Z., Mandić, I., Maneuski, D., Martinez-Mckinney, F., McMahon, S., Meng, L., Mikuz̆, M., Muenstermann, D., Nickerson, R., Peric, I., Phillips, P., Plackett, R., Rubbo, F., Ruckman, L., Segal, J., Seidel, S., Seiden, A., Shipsey, I., Song, W., Stanitzki, M., Su, D., Tamma, C., Turchetta, R., Vigani, L., Volk, J., Wang, R., Warren, M., Wilson, F., Worm, S., Xiu, Q., & Zhang, J. Study of CMOS strip sensor for future silicon tracker. United States. https://doi.org/10.1016/j.nima.2020.164520
Han, Y., Zhu, H., Affolder, A., Arndt, K., Bates, R., Benoit, M., Di Bello, F., Blue, A., Bortoletto, D., Buckland, M., Buttar, C., Caragiulo, P., Chen, Y., Das, D., Doering, D., Dopke, J., Dragone, A., Ehrler, F., Fadeyev, V., Fedorko, W., Galloway, Z., Gay, C., Grabas, H., Gregor, I. M., Grenier, P., Grillo, A., Hiti, B., Hoeferkamp, M., Hommels, L. B.A., Huffman, T., John, J., Kanisauskas, K., Kenney, C., Kramberger, G., Liu, P., Lu, W., Liang, Z., Mandić, I., Maneuski, D., Martinez-Mckinney, F., McMahon, S., Meng, L., Mikuz̆, M., Muenstermann, D., Nickerson, R., Peric, I., Phillips, P., Plackett, R., Rubbo, F., Ruckman, L., Segal, J., Seidel, S., Seiden, A., Shipsey, I., Song, W., Stanitzki, M., Su, D., Tamma, C., Turchetta, R., Vigani, L., Volk, J., Wang, R., Warren, M., Wilson, F., Worm, S., Xiu, Q., and Zhang, J. Tue . "Study of CMOS strip sensor for future silicon tracker". United States. https://doi.org/10.1016/j.nima.2020.164520. https://www.osti.gov/servlets/purl/1768629.
@article{osti_1768629,
title = {Study of CMOS strip sensor for future silicon tracker},
author = {Han, Y. and Zhu, H. and Affolder, A. and Arndt, K. and Bates, R. and Benoit, M. and Di Bello, F. and Blue, A. and Bortoletto, D. and Buckland, M. and Buttar, C. and Caragiulo, P. and Chen, Y. and Das, D. and Doering, D. and Dopke, J. and Dragone, A. and Ehrler, F. and Fadeyev, V. and Fedorko, W. and Galloway, Z. and Gay, C. and Grabas, H. and Gregor, I. M. and Grenier, P. and Grillo, A. and Hiti, B. and Hoeferkamp, M. and Hommels, L. B.A. and Huffman, T. and John, J. and Kanisauskas, K. and Kenney, C. and Kramberger, G. and Liu, P. and Lu, W. and Liang, Z. and Mandić, I. and Maneuski, D. and Martinez-Mckinney, F. and McMahon, S. and Meng, L. and Mikuz̆, M. and Muenstermann, D. and Nickerson, R. and Peric, I. and Phillips, P. and Plackett, R. and Rubbo, F. and Ruckman, L. and Segal, J. and Seidel, S. and Seiden, A. and Shipsey, I. and Song, W. and Stanitzki, M. and Su, D. and Tamma, C. and Turchetta, R. and Vigani, L. and Volk, J. and Wang, R. and Warren, M. and Wilson, F. and Worm, S. and Xiu, Q. and Zhang, J.},
abstractNote = {Monolithic silicon sensors developed with High-Voltage CMOS (HV-CMOS) processes have become highly attractive for charged particle tracking. Compared with the standard CMOS sensors, HV-CMOS sensors can provide larger and deeper depletion regions that lead to larger signals and faster charge collection. They can provide high position resolution, low material budget, high radiation hardness and low cost that are desirable for high performance tracking in harsh collision environment. Various studies have been conducted to explore the technology feasibility for the large-area tracking systems at future collider experiments. CHESS (CMOS HV/HR Evaluation for Strip Sensor) sensor series have been developed as an alternative solution to the conventional silicon micro-strip detectors for the ATLAS inner tracker upgrade. The first prototype (named CHESS1) was to evaluate the diode geometry and the in-pixel analog electronics. Obtained test results were used to optimize the second prototype (named CHESS2). CHESS2 was implemented with a full digital readout architecture and realized as a full reticle sized monolithic sensor. Here, the basic characteristics of the CHESS2 prototype sensors and their performance in response to different input signals are presented.},
doi = {10.1016/j.nima.2020.164520},
journal = {Nuclear Instruments and Methods in Physics Research. Section A, Accelerators, Spectrometers, Detectors and Associated Equipment},
number = ,
volume = 981,
place = {United States},
year = {Tue Aug 11 00:00:00 EDT 2020},
month = {Tue Aug 11 00:00:00 EDT 2020}
}

Works referenced in this record:

Particle pixel detectors in high-voltage CMOS technology—New achievements
journal, September 2011

  • Perić, I.; Kreidl, C.; Fischer, P.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 650, Issue 1
  • DOI: 10.1016/j.nima.2010.11.090

Radiation hardness studies of AMS HV-CMOS 350 nm prototype chip HVStripV1
journal, February 2017


A MAPS based vertex detector for the STAR experiment at RHIC
journal, September 2011

  • Greiner, L.; Anderssen, E.; Matis, H. S.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 650, Issue 1
  • DOI: 10.1016/j.nima.2010.12.006

Characterization of the first prototype CMOS pixel sensor developed for the CEPC vertex detector
journal, May 2019

  • Chen, L. J.; Zhu, H. B.; Ai, X. C.
  • Radiation Detection Technology and Methods, Vol. 3, Issue 3
  • DOI: 10.1007/s41605-019-0124-0

Investigation of HV/HR-CMOS technology for the ATLAS Phase-II Strip Tracker Upgrade
journal, September 2016

  • Fadeyev, V.; Galloway, Z.; Grabas, H.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 831
  • DOI: 10.1016/j.nima.2016.05.092

Charge collection studies in irradiated HV-CMOS particle detectors
journal, April 2016


Test beam measurements of an irradiated prototype pixel sensor designed for the CEPC vertex detector
journal, October 2020

  • Han, Y.; Zhu, H.; Ai, X.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 977
  • DOI: 10.1016/j.nima.2020.164267

Study of built-in amplifier performance on HV-CMOS sensor for the ATLAS phase-II strip tracker upgrade
journal, September 2016

  • Liang, Z.; Affolder, A.; Arndt, K.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 831
  • DOI: 10.1016/j.nima.2016.05.007

Radiation hardness of two CMOS prototypes for the ATLAS HL-LHC upgrade project.
journal, February 2016


A monolithic active pixel sensor for charged particle tracking and imaging using standard VLSI CMOS technology
journal, February 2001

  • Turchetta, R.; Berst, J. D.; Casadei, B.
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 458, Issue 3
  • DOI: 10.1016/S0168-9002(00)00893-7

Charge collection and non-ionizing radiation tolerance of CMOS pixel sensors using a 0.18 μm CMOS process
journal, September 2016

  • Zhang, Ying; Zhu, Hongbo; Zhang, Liang
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 831
  • DOI: 10.1016/j.nima.2016.03.031