DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis

Abstract

Mycobacterium tuberculosis antigen 85 (Ag85) enzymes catalyze the transfer of mycolic acid (MA) from trehalose monomycolate to produce the mycolyl arabinogalactan (mAG) or trehalose dimycolate (TDM). These lipids define the protective mycomembrane of mycobacteria. The current model of substrate binding within the active sites of Ag85s for the production of TDM is not sterically and geometrically feasible; additionally, this model does not account for the production of mAG. Furthermore, this model does not address how Ag85s limit the hydrolysis of the acyl-enzyme intermediate while catalyzing acyl transfer. To inform an updated model, we obtained an Ag85 acyl-enzyme intermediate structure that resembles the mycolated form. Here, we present a 1.45-Å X-ray crystal structure of M. tuberculosis Ag85C covalently modified by tetrahydrolipstatin (THL), an esterase inhibitor that suppresses M. tuberculosis growth and mimics structural attributes of MAs. The mode of covalent inhibition differs from that observed in the reversible inhibition of the human fatty-acid synthase by THL. Similarities between the Ag85-THL structure and previously determined Ag85C structures suggest that the enzyme undergoes structural changes upon acylation, and positioning of the peptidyl arm of THL limits hydrolysis of the acyl-enzyme adduct. Molecular dynamics simulations of the modeled mycolated-enzyme form corroborate the structural analysis.more » From these findings, we propose an alternative arrangement of substrates that rectifies issues with the previous model and suggest a direct role for the β-hydroxy of MA in the second half-reaction of Ag85 catalysis. In conclusion, this information affords the visualization of a complete mycolyltransferase catalytic cycle.« less

Authors:
; ; ; ;
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE
OSTI Identifier:
1768099
Alternate Identifier(s):
OSTI ID: 1459311
Grant/Contract Number:  
AC05-00OR22725
Resource Type:
Published Article
Journal Name:
Journal of Biological Chemistry
Additional Journal Information:
Journal Name: Journal of Biological Chemistry Journal Volume: 293 Journal Issue: 10; Journal ID: ISSN 0021-9258
Publisher:
Elsevier
Country of Publication:
United States
Language:
English
Subject:
59 BASIC BIOLOGICAL SCIENCES; acyltransferase; hydrolase; serine esterase; structural biology; glycolipid; α/β-hydrolase; antigen 85; lipid esterase; mycolyltransferase; tetrahydrolipstatin

Citation Formats

Goins, Christopher M., Dajnowicz, Steven, Smith, Micholas D., Parks, Jerry M., and Ronning, Donald R. Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis. United States: N. p., 2018. Web. doi:10.1074/jbc.RA117.001681.
Goins, Christopher M., Dajnowicz, Steven, Smith, Micholas D., Parks, Jerry M., & Ronning, Donald R. Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis. United States. https://doi.org/10.1074/jbc.RA117.001681
Goins, Christopher M., Dajnowicz, Steven, Smith, Micholas D., Parks, Jerry M., and Ronning, Donald R. Thu . "Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis". United States. https://doi.org/10.1074/jbc.RA117.001681.
@article{osti_1768099,
title = {Mycolyltransferase from Mycobacterium tuberculosis in covalent complex with tetrahydrolipstatin provides insights into antigen 85 catalysis},
author = {Goins, Christopher M. and Dajnowicz, Steven and Smith, Micholas D. and Parks, Jerry M. and Ronning, Donald R.},
abstractNote = {Mycobacterium tuberculosis antigen 85 (Ag85) enzymes catalyze the transfer of mycolic acid (MA) from trehalose monomycolate to produce the mycolyl arabinogalactan (mAG) or trehalose dimycolate (TDM). These lipids define the protective mycomembrane of mycobacteria. The current model of substrate binding within the active sites of Ag85s for the production of TDM is not sterically and geometrically feasible; additionally, this model does not account for the production of mAG. Furthermore, this model does not address how Ag85s limit the hydrolysis of the acyl-enzyme intermediate while catalyzing acyl transfer. To inform an updated model, we obtained an Ag85 acyl-enzyme intermediate structure that resembles the mycolated form. Here, we present a 1.45-Å X-ray crystal structure of M. tuberculosis Ag85C covalently modified by tetrahydrolipstatin (THL), an esterase inhibitor that suppresses M. tuberculosis growth and mimics structural attributes of MAs. The mode of covalent inhibition differs from that observed in the reversible inhibition of the human fatty-acid synthase by THL. Similarities between the Ag85-THL structure and previously determined Ag85C structures suggest that the enzyme undergoes structural changes upon acylation, and positioning of the peptidyl arm of THL limits hydrolysis of the acyl-enzyme adduct. Molecular dynamics simulations of the modeled mycolated-enzyme form corroborate the structural analysis. From these findings, we propose an alternative arrangement of substrates that rectifies issues with the previous model and suggest a direct role for the β-hydroxy of MA in the second half-reaction of Ag85 catalysis. In conclusion, this information affords the visualization of a complete mycolyltransferase catalytic cycle.},
doi = {10.1074/jbc.RA117.001681},
journal = {Journal of Biological Chemistry},
number = 10,
volume = 293,
place = {United States},
year = {Thu Mar 01 00:00:00 EST 2018},
month = {Thu Mar 01 00:00:00 EST 2018}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1074/jbc.RA117.001681

Citation Metrics:
Cited by: 12 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Automated ligand fitting by core-fragment fitting and extension into density
journal, July 2006

  • Terwilliger, Thomas C.; Klei, Herbert; Adams, Paul D.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 62, Issue 8
  • DOI: 10.1107/S0907444906017161

Inactivation of the Mycobacterium tuberculosis Antigen 85 Complex by Covalent, Allosteric Inhibitors
journal, July 2014

  • Favrot, Lorenza; Lajiness, Daniel H.; Ronning, Donald R.
  • Journal of Biological Chemistry, Vol. 289, Issue 36
  • DOI: 10.1074/jbc.M114.582445

GLYCAM06: A generalizable biomolecular force field. Carbohydrates: GLYCAM06
journal, September 2007

  • Kirschner, Karl N.; Yongye, Austin B.; Tschampel, Sarah M.
  • Journal of Computational Chemistry, Vol. 29, Issue 4
  • DOI: 10.1002/jcc.20820

The Three Mycobacterium tuberculosis Antigen 85 Isoforms Have Unique Substrates and Activities Determined by Non-active Site Regions
journal, July 2014

  • Backus, Keriann M.; Dolan, Michael A.; Barry, Conor S.
  • Journal of Biological Chemistry, Vol. 289, Issue 36
  • DOI: 10.1074/jbc.M114.581579

Neutron and X-ray Crystal Structures of a Perdeuterated Enzyme Inhibitor Complex Reveal the Catalytic Proton Network of the Toho-1 β-Lactamase for the Acylation Reaction
journal, December 2012

  • Tomanicek, Stephen J.; Standaert, Robert F.; Weiss, Kevin L.
  • Journal of Biological Chemistry, Vol. 288, Issue 7
  • DOI: 10.1074/jbc.M112.436238

Mycolic Acids: Structures, Biosynthesis, and Beyond
journal, January 2014


Particle mesh Ewald: An N ⋅log( N ) method for Ewald sums in large systems
journal, June 1993

  • Darden, Tom; York, Darrin; Pedersen, Lee
  • The Journal of Chemical Physics, Vol. 98, Issue 12
  • DOI: 10.1063/1.464397

Tuberculosis
journal, October 2016

  • Pai, Madhukar; Behr, Marcel A.; Dowdy, David
  • Nature Reviews Disease Primers, Vol. 2, Issue 1
  • DOI: 10.1038/nrdp.2016.76

Inhibition of pancreatic lipase in vitro by the covalent inhibitor tetrahydrolipstatin
journal, December 1988

  • Hadváry, P.; Lengsfeld, H.; Wolfer, H.
  • Biochemical Journal, Vol. 256, Issue 2
  • DOI: 10.1042/bj2560357

MolProbity : all-atom structure validation for macromolecular crystallography
journal, December 2009

  • Chen, Vincent B.; Arendall, W. Bryan; Headd, Jeffrey J.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 1
  • DOI: 10.1107/S0907444909042073

Targeting Lipid Esterases in Mycobacteria Grown Under Different Physiological Conditions Using Activity-based Profiling with Tetrahydrolipstatin (THL)
journal, December 2013

  • Ravindran, Madhu Sudhan; Rao, Srinivasa P. S.; Cheng, Xiamin
  • Molecular & Cellular Proteomics, Vol. 13, Issue 2
  • DOI: 10.1074/mcp.M113.029942

Convergence and sampling efficiency in replica exchange simulations of peptide folding in explicit solvent
journal, January 2007

  • Periole, Xavier; Mark, Alan E.
  • The Journal of Chemical Physics, Vol. 126, Issue 1
  • DOI: 10.1063/1.2404954

Features and development of Coot
journal, March 2010

  • Emsley, P.; Lohkamp, B.; Scott, W. G.
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 4
  • DOI: 10.1107/S0907444910007493

Numerical integration of the cartesian equations of motion of a system with constraints: molecular dynamics of n-alkanes
journal, March 1977

  • Ryckaert, Jean-Paul; Ciccotti, Giovanni; Berendsen, Herman J. C.
  • Journal of Computational Physics, Vol. 23, Issue 3
  • DOI: 10.1016/0021-9991(77)90098-5

The R.E.D. tools: advances in RESP and ESP charge derivation and force field library building
journal, January 2010

  • Dupradeau, François-Yves; Pigache, Adrien; Zaffran, Thomas
  • Physical Chemistry Chemical Physics, Vol. 12, Issue 28
  • DOI: 10.1039/c0cp00111b

PHENIX: a comprehensive Python-based system for macromolecular structure solution
journal, January 2010

  • Adams, Paul D.; Afonine, Pavel V.; Bunkóczi, Gábor
  • Acta Crystallographica Section D Biological Crystallography, Vol. 66, Issue 2, p. 213-221
  • DOI: 10.1107/S0907444909052925

Role of the Major Antigen of Mycobacterium tuberculosis in Cell Wall Biogenesis
journal, May 1997


Comparison of simple potential functions for simulating liquid water
journal, July 1983

  • Jorgensen, William L.; Chandrasekhar, Jayaraman; Madura, Jeffry D.
  • The Journal of Chemical Physics, Vol. 79, Issue 2
  • DOI: 10.1063/1.445869

Mycobacterium tuberculosis Antigen 85A and 85C Structures Confirm Binding Orientation and Conserved Substrate Specificity
journal, June 2004

  • Ronning, Donald R.; Vissa, Varalakshmi; Besra, Gurdyal S.
  • Journal of Biological Chemistry, Vol. 279, Issue 35
  • DOI: 10.1074/jbc.M400811200

Structure of Met-enkephalin in explicit aqueous solution using replica exchange molecular dynamics: Replica Exchange MD of Met-Enkephalin
journal, December 2001

  • Sanbonmatsu, K. Y.; García, A. E.
  • Proteins: Structure, Function, and Bioinformatics, Vol. 46, Issue 2
  • DOI: 10.1002/prot.1167

Orlistat Is a Novel Inhibitor of Fatty Acid Synthase with Antitumor Activity
journal, March 2004


Fast, scalable generation of high‐quality protein multiple sequence alignments using Clustal Omega
journal, January 2011

  • Sievers, Fabian; Wilm, Andreas; Dineen, David
  • Molecular Systems Biology, Vol. 7, Issue 1
  • DOI: 10.1038/msb.2011.75

Exploring Covalent Allosteric Inhibition of Antigen 85C from Mycobacterium tuberculosis by Ebselen Derivatives
journal, March 2017


Crystal structure of the thioesterase domain of human fatty acid synthase inhibited by Orlistat
journal, July 2007

  • Pemble, Charles W.; Johnson, Lynnette C.; Kridel, Steven J.
  • Nature Structural & Molecular Biology, Vol. 14, Issue 8
  • DOI: 10.1038/nsmb1265

Mechanism of inhibition of Mycobacterium tuberculosis antigen 85 by ebselen
journal, November 2013

  • Favrot, Lorenza; Grzegorzewicz, Anna E.; Lajiness, Daniel H.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms3748

PDB2PQR: expanding and upgrading automated preparation of biomolecular structures for molecular simulations
journal, May 2007

  • Dolinsky, T. J.; Czodrowski, P.; Li, H.
  • Nucleic Acids Research, Vol. 35, Issue Web Server
  • DOI: 10.1093/nar/gkm276

Development and testing of a general amber force field
journal, January 2004

  • Wang, Junmei; Wolf, Romain M.; Caldwell, James W.
  • Journal of Computational Chemistry, Vol. 25, Issue 9
  • DOI: 10.1002/jcc.20035

Progress in targeting cell envelope biogenesis in Mycobacterium tuberculosis
journal, July 2013

  • Jackson, Mary; McNeil, Michael R.; Brennan, Patrick J.
  • Future Microbiology, Vol. 8, Issue 7
  • DOI: 10.2217/fmb.13.52

Disruption of the Genes Encoding Antigen 85A and Antigen 85B of Mycobacterium tuberculosis H37Rv: Effect on Growth in Culture and in Macrophages
journal, February 2000


Mechanism of Orlistat Hydrolysis by the Thioesterase of Human Fatty Acid Synthase
journal, September 2014

  • Fako, Valerie E.; Zhang, Jian-Ting; Liu, Jing-Yuan
  • ACS Catalysis, Vol. 4, Issue 10
  • DOI: 10.1021/cs500956m

[20] Processing of X-ray diffraction data collected in oscillation mode
book, January 1997


Neutron Structure of Human Carbonic Anhydrase II: Implications for Proton Transfer
journal, January 2010

  • Fisher, S. Zoë; Kovalevsky, Andrey Y.; Domsic, John F.
  • Biochemistry, Vol. 49, Issue 3
  • DOI: 10.1021/bi901995n

WebLogo: A Sequence Logo Generator
journal, May 2004

  • Crooks, Gavin E.; Hon, Gary; Chandonia, John-Marc
  • Genome Research, Vol. 14, Issue 6, p. 1188-1190
  • DOI: 10.1101/gr.849004

Theoretical Study of the Mechanism of Proton Transfer in the Esterase Estb from Burkholderia Gladioli
journal, November 2011

  • Chen, Liang; Kong, Xiangqian; Liang, Zhongjie
  • The Journal of Physical Chemistry B, Vol. 115, Issue 44
  • DOI: 10.1021/jp206297d

PTRAJ and CPPTRAJ: Software for Processing and Analysis of Molecular Dynamics Trajectory Data
journal, June 2013

  • Roe, Daniel R.; Cheatham, Thomas E.
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 7
  • DOI: 10.1021/ct400341p

Molecular structure of the Mycobacterium tuberculosis virulence factor, mycolic acid, determines the elicited inflammatory pattern
journal, December 2010

  • Vander Beken, Seppe; Al Dulayymi, Juma'a R.; Naessens, Thomas
  • European Journal of Immunology, Vol. 41, Issue 2
  • DOI: 10.1002/eji.201040719

Convergence of replica exchange molecular dynamics
journal, October 2005

  • Zhang, Wei; Wu, Chun; Duan, Yong
  • The Journal of Chemical Physics, Vol. 123, Issue 15
  • DOI: 10.1063/1.2056540

Works referencing / citing this record:

Regulation of antigen 85C activity by reversible S-glutathionylation: REGULATION OF ANTIGEN 85C ACTIVITY
journal, August 2018

  • Mandato, Alysia; Chai, Yuh-Cherng
  • IUBMB Life, Vol. 70, Issue 11
  • DOI: 10.1002/iub.1923

Exploring the Potential Role of Moonlighting Function of the Surface-Associated Proteins From Mycobacterium bovis BCG Moreau and Pasteur by Comparative Proteomic
journal, April 2019

  • Pagani, Talita Duarte; Guimarães, Ana Carolina R.; Waghabi, Mariana C.
  • Frontiers in Immunology, Vol. 10
  • DOI: 10.3389/fimmu.2019.00716