DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008

Abstract

In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensing galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width $$\sim 3{{\ \rm per\ cent}}$$), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of $$\sim 1{{\ \rm per\ cent}}$$, as long as no external shear constraints are imposed.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3];  [4]; ORCiD logo [2];  [5];  [5];  [6]; ORCiD logo [7];  [7]; ORCiD logo [8];  [9]; ORCiD logo [10];  [11];  [12]; ORCiD logo [13]; ORCiD logo [14];  [15];  [2]; ORCiD logo [16] more »;  [17];  [18];  [19]; ORCiD logo [20]; ORCiD logo [21];  [22];  [23];  [24];  [25]; ORCiD logo [20];  [26];  [2];  [19]; ORCiD logo [27];  [28];  [2];  [23];  [16]; ORCiD logo [23]; ORCiD logo [29];  [21];  [25];  [2]; ORCiD logo [30];  [31];  [32];  [33];  [2];  [25];  [34]; ORCiD logo [35];  [21];  [36]; ORCiD logo [25];  [21]; ORCiD logo [35];  [20];  [2];  [37];  [23];  [20]; ORCiD logo [38]; ORCiD logo [39]; ORCiD logo [40];  [41];  [37];  [2];  [42] « less
  1. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA;Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA
  2. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  3. National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588, Japan
  4. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA;Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  5. DARK, Niels Bohr Institute, University of Copenhagen, Lyngbyvej 2, DK-2100 Copenhagen, Denmark
  6. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA;Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA;Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  7. Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA
  8. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  9. Department of Physics and Astronomy, PAB, 430 Portola Plaza, Box 951547, Los Angeles, CA 90095-1547, USA;Kavli Institute for Particle Astrophysics and Cosmology, Stanford University, 452 Lomita Mall, Stanford, CA 94305, USA
  10. Departamento de Ciencias Fisicas, Universidad Andres Bello Fernandez Concha 700, Las Condes, Santiago, Chile;Millennium Institute of Astrophysics, Monsen ̃ or Nuncio Sotero Sanz 100, Oficina 104, 7500011 Providencia, Santiago, Chile
  11. Department of Physics, University of California Davis, 1 Shields Avenue, Davis, CA 95616, USA
  12. Laboratoire d’Astrophysique, Ecole Polytechnique Fédérale de Lausanne (EPFL), Observatoire de Sauverny, CH-1290 Versoix, Switzerland
  13. STAR Institute, Quartier Agora - Allée du six Aout, 19c, B-4000 Liège, Belgium
  14. Kavli IPMU (WPI), UTIAS, The University of Tokyo, Kashiwa, Chiba 277-8583, Japan
  15. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP 05314-970, Brazil;Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  16. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  17. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France;Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  18. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton BN1 9QH, UK
  19. Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  20. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Madrid 28040, Spain
  21. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA;National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  22. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  23. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain;Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  24. INAF-Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy;Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  25. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil;Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro, RJ 20921-400, Brazil
  26. Department of Physics, IIT Hyderabad, Kandi, Telangana 502285, India
  27. Department of Astronomy/Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721-0065, USA;Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  28. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  29. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA;Kavli Institute for Particle Astrophysics and Cosmology, P. O. Box 2450, Stanford University, Stanford, CA 94305, USA;SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  30. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
  31. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA;Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  32. Center for Astrophysics, Harvard and Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  33. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia;Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
  34. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  35. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  36. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain;Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Bellaterra (Barcelona), Spain
  37. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  38. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  39. Brandeis University, Physics Department, 415 South Street, Waltham, MA 02453, USA
  40. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  41. National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  42. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany;Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
Publication Date:
Research Org.:
SLAC National Accelerator Lab., Menlo Park, CA (United States); Fermi National Accelerator Lab. (FNAL), Batavia, IL (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Aeronautics and Space Administration (NASA); National Science Foundation (NSF); European Research Council (ERC); USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1616309
Alternate Identifier(s):
OSTI ID: 1768040; OSTI ID: 1783169; OSTI ID: 1819568
Report Number(s):
FERMILAB-PUB-20-082-AE-SCD; arXiv:2003.12117
Journal ID: ISSN 0035-8711; oai:inspirehep.net:1788583
Grant/Contract Number:  
AC02-07CH11359; AC02-76SF00515; AC05-00OR22725; HST-GO-15320; AST-1715611; 787886; SC0019193
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 498; Journal Issue: 3; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; gravitational lensing: strong; quasars: individual: DES J0408-5354; WGD 2038-4008; galaxies: groups: general

Citation Formats

Buckley-Geer, E. J., Lin, H., Rusu, C. E., Poh, J., Palmese, A., Agnello, A., Christensen, L., Frieman, J., Shajib, A. J., Treu, T., Collett, T., Birrer, S., Anguita, T., Fassnacht, C. D., Meylan, G., Mukherjee, S., Wong, K. C., Aguena, M., Allam, S., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Everett, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Maia, M. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. C., Paz-Chinchón, F., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. C., Tarle, G., Tucker, D. L., and Varga, T. N. STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008. United States: N. p., 2020. Web. doi:10.1093/mnras/staa2563.
Buckley-Geer, E. J., Lin, H., Rusu, C. E., Poh, J., Palmese, A., Agnello, A., Christensen, L., Frieman, J., Shajib, A. J., Treu, T., Collett, T., Birrer, S., Anguita, T., Fassnacht, C. D., Meylan, G., Mukherjee, S., Wong, K. C., Aguena, M., Allam, S., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Everett, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Maia, M. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. C., Paz-Chinchón, F., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. C., Tarle, G., Tucker, D. L., & Varga, T. N. STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008. United States. https://doi.org/10.1093/mnras/staa2563
Buckley-Geer, E. J., Lin, H., Rusu, C. E., Poh, J., Palmese, A., Agnello, A., Christensen, L., Frieman, J., Shajib, A. J., Treu, T., Collett, T., Birrer, S., Anguita, T., Fassnacht, C. D., Meylan, G., Mukherjee, S., Wong, K. C., Aguena, M., Allam, S., Avila, S., Bertin, E., Bhargava, S., Brooks, D., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., De Vicente, J., Desai, S., Diehl, H. T., Doel, P., Eifler, T. F., Everett, S., Flaugher, B., Fosalba, P., García-Bellido, J., Gaztanaga, E., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hinton, S. R., Honscheid, K., James, D. J., Kuehn, K., Kuropatkin, N., Maia, M. G., Marshall, J. L., Melchior, P., Menanteau, F., Miquel, R., Ogando, R. C., Paz-Chinchón, F., Plazas, A. A., Sanchez, E., Scarpine, V., Schubnell, M., Serrano, S., Sevilla-Noarbe, I., Smith, M., Soares-Santos, M., Suchyta, E., Swanson, M. C., Tarle, G., Tucker, D. L., and Varga, T. N. Sat . "STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008". United States. https://doi.org/10.1093/mnras/staa2563. https://www.osti.gov/servlets/purl/1616309.
@article{osti_1616309,
title = {STRIDES: Spectroscopic and photometric characterization of the environment and effects of mass along the line of sight to the gravitational lenses DES J0408–5354 and WGD 2038–4008},
author = {Buckley-Geer, E. J. and Lin, H. and Rusu, C. E. and Poh, J. and Palmese, A. and Agnello, A. and Christensen, L. and Frieman, J. and Shajib, A. J. and Treu, T. and Collett, T. and Birrer, S. and Anguita, T. and Fassnacht, C. D. and Meylan, G. and Mukherjee, S. and Wong, K. C. and Aguena, M. and Allam, S. and Avila, S. and Bertin, E. and Bhargava, S. and Brooks, D. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and Costanzi, M. and da Costa, L. N. and De Vicente, J. and Desai, S. and Diehl, H. T. and Doel, P. and Eifler, T. F. and Everett, S. and Flaugher, B. and Fosalba, P. and García-Bellido, J. and Gaztanaga, E. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hinton, S. R. and Honscheid, K. and James, D. J. and Kuehn, K. and Kuropatkin, N. and Maia, M. G. and Marshall, J. L. and Melchior, P. and Menanteau, F. and Miquel, R. and Ogando, R. C. and Paz-Chinchón, F. and Plazas, A. A. and Sanchez, E. and Scarpine, V. and Schubnell, M. and Serrano, S. and Sevilla-Noarbe, I. and Smith, M. and Soares-Santos, M. and Suchyta, E. and Swanson, M. C. and Tarle, G. and Tucker, D. L. and Varga, T. N.},
abstractNote = {In time-delay cosmography, three of the key ingredients are (1) determining the velocity dispersion of the lensing galaxy, (2) identifying galaxies and groups along the line of sight with sufficient proximity and mass to be included in the mass model, and (3) estimating the external convergence κext from less massive structures that are not included in the mass model. We present results on all three of these ingredients for two time-delay lensed quad quasar systems, DES J0408–5354 and WGD 2038–4008 . We use the Gemini, Magellan, and VLT telescopes to obtain spectra to both measure the stellar velocity dispersions of the main lensing galaxies and to identify the line-of-sight galaxies in these systems. Next, we identify 10 groups in DES J0408–5354 and two groups in WGD 2038–4008 using a group-finding algorithm. We then identify the most significant galaxy and galaxy-group perturbers using the ‘flexion shift’ criterion. We determine the probability distribution function of the external convergence κext for both of these systems based on our spectroscopy and on the DES-only multiband wide-field observations. Using weighted galaxy counts, calibrated based on the Millennium Simulation, we find that DES J0408–5354 is located in a significantly underdense environment, leading to a tight (width $\sim 3{{\ \rm per\ cent}}$), negative-value κext distribution. On the other hand, WGD 2038–4008 is located in an environment of close to unit density, and its low source redshift results in a much tighter κext of $\sim 1{{\ \rm per\ cent}}$, as long as no external shear constraints are imposed.},
doi = {10.1093/mnras/staa2563},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 3,
volume = 498,
place = {United States},
year = {Sat Aug 29 00:00:00 EDT 2020},
month = {Sat Aug 29 00:00:00 EDT 2020}
}

Works referenced in this record:

Ensemble samplers with affine invariance
journal, January 2010

  • Goodman, Jonathan; Weare, Jonathan
  • Communications in Applied Mathematics and Computational Science, Vol. 5, Issue 1
  • DOI: 10.2140/camcos.2010.5.65

SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

The STRong lensing Insights into the Dark Energy Survey (STRIDES) 2016 follow-up campaign – I. Overview and classification of candidates selected by two techniques
journal, August 2018

  • Treu, T.; Agnello, A.; Baumer, M. A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2329

The hierarchical formation of the brightest cluster galaxies
journal, February 2007


Measures of location and scale for velocities in clusters of galaxies - A robust approach
journal, July 1990

  • Beers, Timothy C.; Flynn, Kevin; Gebhardt, Karl
  • The Astronomical Journal, Vol. 100
  • DOI: 10.1086/115487

CFHTLenS: the Canada–France–Hawaii Telescope Lensing Survey: CFHTLenS
journal, October 2012

  • Heymans, Catherine; Van Waerbeke, Ludovic; Miller, Lance
  • Monthly Notices of the Royal Astronomical Society, Vol. 427, Issue 1
  • DOI: 10.1111/j.1365-2966.2012.21952.x

Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey
journal, September 2006


Ray-tracing through the Millennium Simulation: Born corrections and lens-lens coupling in cosmic shear and galaxy-galaxy lensing
journal, March 2009


Reconciling mass estimates of ultradiffuse galaxies
journal, October 2018

  • Laporte, Chervin F. P.; Agnello, Adriano; Navarro, Julio F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 1
  • DOI: 10.1093/mnras/sty2891

Discovery of the Lensed Quasar System DES J0408-5354
journal, March 2017


redMaPPer. I. ALGORITHM AND SDSS DR8 CATALOG
journal, April 2014


Clash: Precise new Constraints on the mass Profile of the Galaxy Cluster A2261
journal, August 2012


Evolutionary stellar population synthesis with MILES - I. The base models and a new line index system
journal, March 2010


H0LiCOW – III. Quantifying the effect of mass along the line of sight to the gravitational lens HE 0435−1223 through weighted galaxy counts★
journal, February 2017

  • Rusu, Cristian E.; Fassnacht, Christopher D.; Sluse, Dominique
  • Monthly Notices of the Royal Astronomical Society, Vol. 467, Issue 4
  • DOI: 10.1093/mnras/stx285

H0LiCOW – I. H0 Lenses in COSMOGRAIL's Wellspring: program overview
journal, February 2017

  • Suyu, S. H.; Bonvin, V.; Courbin, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 468, Issue 3
  • DOI: 10.1093/mnras/stx483

Methods for rapidly processing angular masks of next-generation galaxy surveys
journal, July 2008

  • Swanson, M. E. C.; Tegmark, Max; Hamilton, Andrew J. S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 387, Issue 4
  • DOI: 10.1111/j.1365-2966.2008.13296.x

The dark Energy Camera
journal, October 2015


emcee : The MCMC Hammer
journal, March 2013

  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925
  • DOI: 10.1086/670067

Planck intermediate results : XLIV. Structure of the Galactic magnetic field from dust polarization maps of the southern Galactic cap
journal, December 2016


On the Possibility of Determining Hubble's Parameter and the Masses of Galaxies from the Gravitational Lens Effect
journal, September 1964


Dark Energy Survey Year 1 Results: The Photometric Data Set for Cosmology
journal, April 2018

  • Drlica-Wagner, A.; Sevilla-Noarbe, I.; Rykoff, E. S.
  • The Astrophysical Journal Supplement Series, Vol. 235, Issue 2
  • DOI: 10.3847/1538-4365/aab4f5

A SHARP view of H0LiCOW: H0 from three time-delay gravitational lens systems with adaptive optics imaging
journal, September 2019

  • Chen, Geoff C-F; Fassnacht, Christopher D.; Suyu, Sherry H.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 2
  • DOI: 10.1093/mnras/stz2547

Galaxy number counts and implications for strong lensing: Galaxy number counts and strong lensing
journal, October 2010


Galaxy formation in the Planck cosmology – I. Matching the observed evolution of star formation rates, colours and stellar masses
journal, June 2015

  • Henriques, Bruno M. B.; White, Simon D. M.; Thomas, Peter A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 451, Issue 3
  • DOI: 10.1093/mnras/stv705

Accurate Stellar Kinematics at Faint Magnitudes: Application to the BoÖTes i Dwarf Spheroidal Galaxy
journal, July 2011


A new hybrid framework to efficiently model lines of sight to gravitational lenses
journal, August 2014

  • McCully, Curtis; Keeton, Charles R.; Wong, Kenneth C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 443, Issue 4
  • DOI: 10.1093/mnras/stu1316

The Dark Energy Survey: Data Release 1
journal, November 2018

  • Abbott, T. M. C.; Abdalla, F. B.; Allam, S.
  • The Astrophysical Journal Supplement Series, Vol. 239, Issue 2
  • DOI: 10.3847/1538-4365/aae9f0

Time delay cosmography
journal, July 2016


The Dark Energy Survey Image Processing Pipeline
journal, May 2018

  • Morganson, E.; Gruendl, R. A.; Menanteau, F.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 989
  • DOI: 10.1088/1538-3873/aab4ef

Dissecting the Gravitational lens B1608+656. ii. Precision Measurements of the Hubble Constant, Spatial Curvature, and the dark Energy Equation of State
journal, February 2010


Measuring and modelling the redshift evolution of clustering: the Hubble Deep Field North
journal, December 1999


A compact early-type galaxy at z= 0.6 under a magnifying lens: evidence for inside-out growth: Super-resolving a compact ETG at z = 0.6
journal, December 2010


The Luminosity Function and Stellar Evolution.
journal, January 1955

  • Salpeter, Edwin E.
  • The Astrophysical Journal, Vol. 121
  • DOI: 10.1086/145971

Is every strong lens model unhappy in its own way? Uniform modelling of a sample of 13 quadruply+ imaged quasars
journal, December 2018

  • Shajib, A. J.; Birrer, S.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 483, Issue 4
  • DOI: 10.1093/mnras/sty3397

IMACS: The Inamori-Magellan Areal Camera and Spectrograph on Magellan-Baade
journal, March 2011

  • Dressler, Alan; Bigelow, Bruce; Hare, Tyson
  • Publications of the Astronomical Society of the Pacific, Vol. 123, Issue 901
  • DOI: 10.1086/658908

Astropy: A community Python package for astronomy
journal, September 2013


DES meets Gaia: discovery of strongly lensed quasars from a multiplet search
journal, June 2018

  • Agnello, A.; Lin, H.; Kuropatkin, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 479, Issue 4
  • DOI: 10.1093/mnras/sty1419

Medium-resolution Isaac Newton Telescope library of empirical spectra
journal, September 2006

  • Sanchez-Blazquez, P.; Peletier, R. F.; Jimenez-Vicente, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 371, Issue 2
  • DOI: 10.1111/j.1365-2966.2006.10699.x

Quantifying Environmental and Line-of-sight Effects in Models of Strong Gravitational Lens Systems
journal, February 2017


A Spectroscopic Survey of the Fields of 28 Strong Gravitational Lenses: the Group Catalog
journal, December 2016

  • Wilson, Michelle L.; Zabludoff, Ann I.; Ammons, S. Mark
  • The Astrophysical Journal, Vol. 833, Issue 2
  • DOI: 10.3847/1538-4357/833/2/194

Bayesian Photometric Redshift Estimation
journal, June 2000

  • Benitez, Narciso
  • The Astrophysical Journal, Vol. 536, Issue 2
  • DOI: 10.1086/308947

Galactic Stellar and Substellar Initial Mass Function
journal, July 2003

  • Chabrier, Gilles
  • Publications of the Astronomical Society of the Pacific, Vol. 115, Issue 809
  • DOI: 10.1086/376392

Three steps towards robust regression
journal, March 1976


Detailed Decomposition of Galaxy Images. ii. Beyond Axisymmetric Models
journal, April 2010


STRIDES: a 3.9 per cent measurement of the Hubble constant from the strong lens system DES J0408−5354
journal, March 2020

  • Shajib, A. J.; Birrer, S.; Treu, T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 494, Issue 4
  • DOI: 10.1093/mnras/staa828

The scaling relation between richness and mass of galaxy clusters: a Bayesian approach
journal, March 2010


THE SCALING OF STELLAR MASS AND CENTRAL STELLAR VELOCITY DISPERSION FOR QUIESCENT GALAXIES AT z < 0.7
journal, December 2016

  • Zahid, H. Jabran; Geller, Margaret J.; Fabricant, Daniel G.
  • The Astrophysical Journal, Vol. 832, Issue 2
  • DOI: 10.3847/0004-637X/832/2/203

Line profiles from discrete kinematic data: Line profiles from discrete kinematic data
journal, July 2012


H0LiCOW – IX. Cosmographic analysis of the doubly imaged quasar SDSS 1206+4332 and a new measurement of the Hubble constant
journal, January 2019

  • Birrer, S.; Treu, T.; Rusu, C. E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 484, Issue 4
  • DOI: 10.1093/mnras/stz200

Simulations of the formation, evolution and clustering of galaxies and quasars
journal, June 2005

  • Springel, Volker; White, Simon D. M.; Jenkins, Adrian
  • Nature, Vol. 435, Issue 7042
  • DOI: 10.1038/nature03597

Current Velocity Data on Dwarf Galaxy NGC 1052-DF2 do not Constrain it to Lack Dark Matter
journal, May 2018

  • Martin, Nicolas F.; Collins, Michelle L. M.; Longeard, Nicolas
  • The Astrophysical Journal, Vol. 859, Issue 1
  • DOI: 10.3847/2041-8213/aac216

H0LiCOW – X. Spectroscopic/imaging survey and galaxy-group identification around the strong gravitational lens system WFI 2033−4723
journal, September 2019

  • Sluse, D.; Rusu, C. E.; Fassnacht, C. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 490, Issue 1
  • DOI: 10.1093/mnras/stz2483

The internal structure of the lens PG1115+080: breaking degeneracies in the value of the Hubble constant
journal, September 2002


A scheme to deal accurately and efficiently with complex angular masks in galaxy surveys
journal, March 2004


DNF – Galaxy photometric redshift by Directional Neighbourhood Fitting
journal, April 2016

  • De Vicente, J.; Sánchez, E.; Sevilla-Noarbe, I.
  • Monthly Notices of the Royal Astronomical Society, Vol. 459, Issue 3
  • DOI: 10.1093/mnras/stw857

ULySS : a full spectrum fitting package
journal, May 2009


A Method for Measuring (Slopes of) the mass Profiles of Dwarf Spheroidal Galaxies
journal, November 2011


Mapping Compound Cosmic Telescopes Containing Multiple Projected Cluster-Scale Halos
journal, December 2013

  • Ammons, S. Mark; Wong, Kenneth C.; Zabludoff, Ann I.
  • The Astrophysical Journal, Vol. 781, Issue 1
  • DOI: 10.1088/0004-637X/781/1/2

Stellar population synthesis at the resolution of 2003
journal, October 2003


Reconstructing the lensing mass in the Universe from photometric catalogue data
journal, April 2013

  • Collett, Thomas E.; Marshall, Philip J.; Auger, Matthew W.
  • Monthly Notices of the Royal Astronomical Society, Vol. 432, Issue 1
  • DOI: 10.1093/mnras/stt504

Dark Energy Survey Year 1 Results: redshift distributions of the weak-lensing source galaxies
journal, April 2018

  • Hoyle, B.; Gruen, D.; Bernstein, G. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 478, Issue 1
  • DOI: 10.1093/mnras/sty957

The MUSE Hubble Ultra Deep Field Survey: V. Spatially resolved stellar kinematics of galaxies at redshift 0.2 ≲  z  ≲ 0.8⋆
journal, November 2017


H0LiCOW – II. Spectroscopic survey and galaxy-group identification of the strong gravitational lens system HE 0435−1223
journal, June 2017

  • Sluse, D.; Sonnenfeld, A.; Rumbaugh, N.
  • Monthly Notices of the Royal Astronomical Society, Vol. 470, Issue 4
  • DOI: 10.1093/mnras/stx1484

Improving the Precision of Time-Delay Cosmography with Observations of Galaxies Along the line of Sight
journal, April 2013


Galaxy groups at 0.3 ≤ z ≤ 0.55 - I. Group properties
journal, March 2005


RVSAO 2.0: Digital Redshifts and Radial Velocities
journal, August 1998

  • Kurtz, Michael J. ; Mink, Douglas J. 
  • Publications of the Astronomical Society of the Pacific, Vol. 110, Issue 750
  • DOI: 10.1086/316207