DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations

Abstract

Bismuth telluride (Bi2Te3) and its alloys with antimony telluride (Sb2Te3) have long been considered to be the best room-temperature bulk thermoelectric (TE) materials. In recent decades, proof-of-concept demonstrations on Bi2Te3-Sb2Te3 nanostructures have shown high TE performance due to reduction in lattice thermal conductivities. Particularly, ultra-low thermal conductivities have been observed in Bi2Te3-Sb2Te3 1D superlattices, leading to thermoelectric figures of merit (ZT) as high as 2.4. In contrast, very few computational studies have been performed to provide insight into the phonon transport across these nanostructures. In this work, we use non-equilibrium molecular dynamics simulations with previously developed force fields to simulate thermal transport across Bi2Te3-Sb2Te3 interfaces and superlattices. We first calculate the thermal conductance associated with a Bi2Te3-Sb2Te3 interface across a temperature range of 200–400 K. Furthermore, the values are also compared with thermal conductances calculated by a modified Landauer transport formalism using phonon transmission coefficients obtained from the diffuse mismatch model. Our results show that inelastic scattering processes contribute to an increase in interfacial thermal conductance at higher temperatures. Finally, we calculate the thermal conductivities of Bi2Te3-Sb2Te3 superlattices with varying period lengths from 2 to 18 nm. A minimum thermal conductivity of 0.27 W/mK is observed at a period lengthmore » of 4 nm, which is attributed to the competition between incoherent and coherent phonon transport regimes. In comparison with previous experimental measurements in the literature, our results show good agreement with respect to the range of thermal conductivity values and the period length corresponding to the minimum superlattice thermal conductivity.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [1]
  1. Purdue Univ., West Lafayette, IN (United States)
  2. Georgia Institute of Technology, Atlanta, GA (United States)
  3. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE); Defense Advanced Research Projects Agency (DARPA)
OSTI Identifier:
1764459
Grant/Contract Number:  
AC05-00OR22725; HR0011-15-2-0037
Resource Type:
Accepted Manuscript
Journal Name:
ACS Applied Materials and Interfaces
Additional Journal Information:
Journal Volume: 13; Journal Issue: 3; Journal ID: ISSN 1944-8244
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
42 ENGINEERING; bismuth telluride; antimony telluride; superlattice; interfacial thermal conductance; thermal conductivity; molecular dynamics

Citation Formats

Roy Chowdhury, Prabudhya, Shi, Jingjing, Feng, Tianli, and Ruan, Xiulin. Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations. United States: N. p., 2021. Web. doi:10.1021/acsami.0c17851.
Roy Chowdhury, Prabudhya, Shi, Jingjing, Feng, Tianli, & Ruan, Xiulin. Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations. United States. https://doi.org/10.1021/acsami.0c17851
Roy Chowdhury, Prabudhya, Shi, Jingjing, Feng, Tianli, and Ruan, Xiulin. Tue . "Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations". United States. https://doi.org/10.1021/acsami.0c17851. https://www.osti.gov/servlets/purl/1764459.
@article{osti_1764459,
title = {Prediction of Bi2Te3-Sb2Te3 Interfacial Conductance and Superlattice Thermal Conductivity Using Molecular Dynamics Simulations},
author = {Roy Chowdhury, Prabudhya and Shi, Jingjing and Feng, Tianli and Ruan, Xiulin},
abstractNote = {Bismuth telluride (Bi2Te3) and its alloys with antimony telluride (Sb2Te3) have long been considered to be the best room-temperature bulk thermoelectric (TE) materials. In recent decades, proof-of-concept demonstrations on Bi2Te3-Sb2Te3 nanostructures have shown high TE performance due to reduction in lattice thermal conductivities. Particularly, ultra-low thermal conductivities have been observed in Bi2Te3-Sb2Te3 1D superlattices, leading to thermoelectric figures of merit (ZT) as high as 2.4. In contrast, very few computational studies have been performed to provide insight into the phonon transport across these nanostructures. In this work, we use non-equilibrium molecular dynamics simulations with previously developed force fields to simulate thermal transport across Bi2Te3-Sb2Te3 interfaces and superlattices. We first calculate the thermal conductance associated with a Bi2Te3-Sb2Te3 interface across a temperature range of 200–400 K. Furthermore, the values are also compared with thermal conductances calculated by a modified Landauer transport formalism using phonon transmission coefficients obtained from the diffuse mismatch model. Our results show that inelastic scattering processes contribute to an increase in interfacial thermal conductance at higher temperatures. Finally, we calculate the thermal conductivities of Bi2Te3-Sb2Te3 superlattices with varying period lengths from 2 to 18 nm. A minimum thermal conductivity of 0.27 W/mK is observed at a period length of 4 nm, which is attributed to the competition between incoherent and coherent phonon transport regimes. In comparison with previous experimental measurements in the literature, our results show good agreement with respect to the range of thermal conductivity values and the period length corresponding to the minimum superlattice thermal conductivity.},
doi = {10.1021/acsami.0c17851},
journal = {ACS Applied Materials and Interfaces},
number = 3,
volume = 13,
place = {United States},
year = {Tue Jan 12 00:00:00 EST 2021},
month = {Tue Jan 12 00:00:00 EST 2021}
}

Works referenced in this record:

Thermal conductivity of symmetrically strained Si/Ge superlattices
journal, September 2000

  • Borca-Tasciuc, Theodorian; Liu, Weili; Liu, Jianlin
  • Superlattices and Microstructures, Vol. 28, Issue 3
  • DOI: 10.1006/spmi.2000.0900

Phonon Transport at Crystalline Si/Ge Interfaces: The Role of Interfacial Modes of Vibration
journal, March 2016

  • Gordiz, Kiarash; Henry, Asegun
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep23139

Thermoelectric Nanowires Based on Bismuth Telluride
journal, January 2015


Ab initio and molecular dynamics predictions for electron and phonon transport in bismuth telluride
journal, March 2008


Thermoelectric transport in Bi 2 Te 3 /Sb 2 Te 3 superlattices
journal, August 2012


Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Equilibrium Molecular Dynamics Simulations on Interfacial Phonon Transport
journal, January 2014


Prediction of Low-Thermal-Conductivity Compounds with First-Principles Anharmonic Lattice-Dynamics Calculations and Bayesian Optimization
journal, November 2015


Thermal Conductivity of Graphene-hBN Superlattice Ribbons
journal, February 2018


Enhancement of Thermoelectric Properties in Bi-Sb-Te Alloy Nanowires by Pulsed Electrodeposition
journal, June 2015


Diffuse mismatch model of thermal boundary conductance using exact phonon dispersion
journal, November 2005

  • Reddy, Pramod; Castelino, Kenneth; Majumdar, Arun
  • Applied Physics Letters, Vol. 87, Issue 21
  • DOI: 10.1063/1.2133890

Role of anharmonic phonon scattering in the spectrally decomposed thermal conductance at planar interfaces
journal, October 2014


Aspects of Thin-Film Superlattice Thermoelectric Materials, Devices, and Applications
journal, March 2006

  • Böttner, Harald; Chen, Gang; Venkatasubramanian, Rama
  • MRS Bulletin, Vol. 31, Issue 3
  • DOI: 10.1557/mrs2006.47

Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires
journal, May 2009

  • Mavrokefalos, Anastassios; Moore, Arden L.; Pettes, Michael T.
  • Journal of Applied Physics, Vol. 105, Issue 10
  • DOI: 10.1063/1.3133145

Lattice thermal conductivity reduction and phonon localizationlike behavior in superlattice structures
journal, January 2000


Randomness-Induced Phonon Localization in Graphene Heat Conduction
journal, June 2018

  • Hu, Shiqian; Zhang, Zhongwei; Jiang, Pengfei
  • The Journal of Physical Chemistry Letters, Vol. 9, Issue 14
  • DOI: 10.1021/acs.jpclett.8b01653

Phonon wave interference in graphene and boron nitride superlattice
journal, July 2016

  • Chen, Xue-Kun; Xie, Zhong-Xiang; Zhou, Wu-Xing
  • Applied Physics Letters, Vol. 109, Issue 2
  • DOI: 10.1063/1.4958688

Minimum superlattice thermal conductivity from molecular dynamics
journal, November 2005


The best nanoparticle size distribution for minimum thermal conductivity
journal, March 2015

  • Zhang, Hang; Minnich, Austin J.
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep08995

Thermal transport in bismuth telluride quintuple layer: mode-resolved phonon properties and substrate effects
journal, June 2016


Synthesis and Thermoelectric Properties of Compositional-Modulated Lead Telluride–Bismuth Telluride Nanowire Heterostructures
journal, April 2013

  • Fang, Haiyu; Feng, Tianli; Yang, Haoran
  • Nano Letters, Vol. 13, Issue 5
  • DOI: 10.1021/nl400319u

Thin-film thermoelectric devices with high room-temperature figures of merit
journal, October 2001

  • Venkatasubramanian, Rama; Siivola, Edward; Colpitts, Thomas
  • Nature, Vol. 413, Issue 6856, p. 597-602
  • DOI: 10.1038/35098012

Thermal conductivity in strain symmetrized Si/Ge superlattices on Si(111)
journal, November 2003

  • Chakraborty, S.; Kleint, C. A.; Heinrich, A.
  • Applied Physics Letters, Vol. 83, Issue 20
  • DOI: 10.1063/1.1628819

Machine learning maximized Anderson localization of phonons in aperiodic superlattices
journal, March 2020


Molecular dynamics calculation of the thermal conductivity of superlattices
journal, June 2002


Thermoelectric properties of individual electrodeposited bismuth telluride nanowires
journal, September 2005

  • Zhou, Jianhua; Jin, Chuangui; Seol, Jae Hun
  • Applied Physics Letters, Vol. 87, Issue 13
  • DOI: 10.1063/1.2058217

The General Utility Lattice Program ( GULP )
journal, May 2003


Anisotropic Thermal Boundary Resistance across 2D Black Phosphorus: Experiment and Atomistic Modeling of Interfacial Energy Transport
journal, June 2019


Thermal conductivity of GaAs/AlAs superlattices and the puzzle of interfaces
journal, November 2010

  • Termentzidis, Konstantinos; Chantrenne, Patrice; Duquesne, Jean-Yves
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 47
  • DOI: 10.1088/0953-8984/22/47/475001

Beating the amorphous limit in thermal conductivity by superlattices design
journal, September 2015

  • Mizuno, Hideyuki; Mossa, Stefano; Barrat, Jean-Louis
  • Scientific Reports, Vol. 5, Issue 1
  • DOI: 10.1038/srep14116

Ein Vergleich zwischen Bi2Te3 und Bi2Te2S
journal, February 1939


Minimum Thermal Conductivity of Superlattices
journal, January 2000


Modeling heat transfer in Bi2Te3–Sb2Te3 nanostructures
journal, January 2009


Multifunctional structural design of graphene thermoelectrics by Bayesian optimization
journal, June 2018

  • Yamawaki, Masaki; Ohnishi, Masato; Ju, Shenghong
  • Science Advances, Vol. 4, Issue 6
  • DOI: 10.1126/sciadv.aar4192

Refinement of the Sb 2 Te 3 and Sb 2 Te 2 Se structures and their relationship to nonstoichiometric Sb 2 Te 3− y Se y compounds
journal, May 1974

  • Anderson, T. L.; Krause, H. B.
  • Acta Crystallographica Section B Structural Crystallography and Crystal Chemistry, Vol. 30, Issue 5
  • DOI: 10.1107/S0567740874004729

Thermal conductivity prediction and analysis of few-quintuple Bi2Te3 thin films: A molecular dynamics study
journal, November 2010

  • Qiu, Bo; Ruan, Xiulin
  • Applied Physics Letters, Vol. 97, Issue 18
  • DOI: 10.1063/1.3514252

Enhanced thermoelectric performance of a quintuple layer of Bi 2 Te 3
journal, July 2014

  • Zhang, J.; Liu, H. J.; Cheng, L.
  • Journal of Applied Physics, Vol. 116, Issue 2
  • DOI: 10.1063/1.4889921

Cross-plane thermal conductivity of (Ti,W)N/(Al,Sc)N metal/semiconductor superlattices
journal, January 2016


Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure
journal, January 2007

  • Tang, Xinfeng; Xie, Wenjie; Li, Han
  • Applied Physics Letters, Vol. 90, Issue 1
  • DOI: 10.1063/1.2425007

Syntheses and thermoelectric properties of Bi2Te3∕Sb2Te3 bulk nanocomposites with laminated nanostructure
journal, April 2008

  • Cao, Y. Q.; Zhao, X. B.; Zhu, T. J.
  • Applied Physics Letters, Vol. 92, Issue 14
  • DOI: 10.1063/1.2900960

On-chip cooling by superlattice-based thin-film thermoelectrics
journal, January 2009

  • Chowdhury, Ihtesham; Prasher, Ravi; Lofgreen, Kelly
  • Nature Nanotechnology, Vol. 4, Issue 4
  • DOI: 10.1038/nnano.2008.417

Enhanced thermoelectric performance in PbTe-based superlattice structures from reduction of lattice thermal conductivity
journal, July 2005

  • Caylor, J. C.; Coonley, K.; Stuart, J.
  • Applied Physics Letters, Vol. 87, Issue 2
  • DOI: 10.1063/1.1992662

A formalism for calculating the modal contributions to thermal interface conductance
journal, September 2015


High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys
journal, May 2008


Lattice dynamics in Bi 2 Te 3 and Sb 2 Te 3 : Te and Sb density of phonon states
journal, December 2012


Bismuth Telluride Based Nanowires for Thermoelectric Power Generation
journal, January 2016


Development of interatomic potentials for the complex binary compound Sb 2 Te 3 and the prediction of thermal conductivity
journal, April 2019


Lattice thermal conductivity of (Bi 1 x Sb x ) 2 Te 3 alloys with embedded nanoparticles
journal, March 2012