DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate

Abstract

Abstract Surface energy budgets of high-latitude permafrost systems are poorly represented in Earth system models (ESMs), yet permafrost is rapidly degrading and these dynamics are critical to future carbon-climate feedback predictions. A potentially important factor in permafrost degradation neglected so far by ESMs is heat transfer from precipitation, although increases in soil temperature and thaw depth have been observed following increases in precipitation. Using observations and a mechanistic ecosystem model, we show here that increases in precipitation hasten active layer development beyond that caused by surface air warming across the North Slope of Alaska (NSA) under recent and 21st century climate (RCP8.5). Modeled active layer depth (ALD) in simulations that allow precipitation heat transfer agreed very well with observations from 28 Circumpolar Active Layer Monitoring sites (R 2 = 0.63; RMSE = 10 cm). Simulations that ignored precipitation heat transfer resulted in lower spatially-averaged soil temperatures and a 39 cm shallower ALD by 2100 across the NSA. The results from our sensitivity analysis show that projected increases in 21st century precipitation deepen the active layer by enhancing precipitation heat transfer and ground thermal conductivity, suggesting that precipitation is as important an environmental control on permafrost degradation as surface air temperature.more » We conclude that ESMs that do not account for precipitation heat transfer likely underestimate ALD rates of change, and thus likely predict biased ecosystem responses.« less

Authors:
ORCiD logo; ; ;
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE; USDOE Office of Science (SC), Biological and Environmental Research (BER), Climate and Environmental Sciences Division
OSTI Identifier:
1835417
Alternate Identifier(s):
OSTI ID: 1763707
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Published Article
Journal Name:
Environmental Research Letters
Additional Journal Information:
Journal Name: Environmental Research Letters Journal Volume: 16 Journal Issue: 2; Journal ID: ISSN 1748-9326
Publisher:
IOP Publishing
Country of Publication:
United Kingdom
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; permafrost degradation; precipitation heat; climate warning; active layer depth

Citation Formats

Mekonnen, Zelalem A., Riley, William J., Grant, Robert F., and Romanovsky, Vladimir E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. United Kingdom: N. p., 2021. Web. doi:10.1088/1748-9326/abc444.
Mekonnen, Zelalem A., Riley, William J., Grant, Robert F., & Romanovsky, Vladimir E. Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate. United Kingdom. https://doi.org/10.1088/1748-9326/abc444
Mekonnen, Zelalem A., Riley, William J., Grant, Robert F., and Romanovsky, Vladimir E. Thu . "Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate". United Kingdom. https://doi.org/10.1088/1748-9326/abc444.
@article{osti_1835417,
title = {Changes in precipitation and air temperature contribute comparably to permafrost degradation in a warmer climate},
author = {Mekonnen, Zelalem A. and Riley, William J. and Grant, Robert F. and Romanovsky, Vladimir E.},
abstractNote = {Abstract Surface energy budgets of high-latitude permafrost systems are poorly represented in Earth system models (ESMs), yet permafrost is rapidly degrading and these dynamics are critical to future carbon-climate feedback predictions. A potentially important factor in permafrost degradation neglected so far by ESMs is heat transfer from precipitation, although increases in soil temperature and thaw depth have been observed following increases in precipitation. Using observations and a mechanistic ecosystem model, we show here that increases in precipitation hasten active layer development beyond that caused by surface air warming across the North Slope of Alaska (NSA) under recent and 21st century climate (RCP8.5). Modeled active layer depth (ALD) in simulations that allow precipitation heat transfer agreed very well with observations from 28 Circumpolar Active Layer Monitoring sites (R 2 = 0.63; RMSE = 10 cm). Simulations that ignored precipitation heat transfer resulted in lower spatially-averaged soil temperatures and a 39 cm shallower ALD by 2100 across the NSA. The results from our sensitivity analysis show that projected increases in 21st century precipitation deepen the active layer by enhancing precipitation heat transfer and ground thermal conductivity, suggesting that precipitation is as important an environmental control on permafrost degradation as surface air temperature. We conclude that ESMs that do not account for precipitation heat transfer likely underestimate ALD rates of change, and thus likely predict biased ecosystem responses.},
doi = {10.1088/1748-9326/abc444},
journal = {Environmental Research Letters},
number = 2,
volume = 16,
place = {United Kingdom},
year = {Thu Jan 21 00:00:00 EST 2021},
month = {Thu Jan 21 00:00:00 EST 2021}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1088/1748-9326/abc444

Save / Share:

Works referenced in this record:

Report from the International Permafrost Association: state of permafrost in the first decade of the 21st century
journal, January 2008

  • Brown, Jerry; Romanovsky, Vladimir E.
  • Permafrost and Periglacial Processes, Vol. 19, Issue 2
  • DOI: 10.1002/ppp.618

Permafrost carbon−climate feedback is sensitive to deep soil carbon decomposability but not deep soil nitrogen dynamics
journal, March 2015

  • Koven, Charles D.; Lawrence, David M.; Riley, William J.
  • Proceedings of the National Academy of Sciences
  • DOI: 10.1073/pnas.1415123112

Hydrologic and thermal properties of the active layer in the Alaskan Arctic
journal, May 1991


Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle
journal, September 2008

  • Schuur, Edward A. G.; Bockheim, James; Canadell, Josep G.
  • BioScience, Vol. 58, Issue 8
  • DOI: 10.1641/B580807

Carbon dioxide sources from Alaska driven by increasing early winter respiration from Arctic tundra
journal, May 2017

  • Commane, Róisín; Lindaas, Jakob; Benmergui, Joshua
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 21
  • DOI: 10.1073/pnas.1618567114

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization
journal, January 2016

  • Eyring, Veronika; Bony, Sandrine; Meehl, Gerald A.
  • Geoscientific Model Development, Vol. 9, Issue 5
  • DOI: 10.5194/gmd-9-1937-2016

Decomposition of old organic matter as a result of deeper active layers in a snow depth manipulation experiment
journal, January 2010


Measurement of rain Temperature
journal, February 1949


Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
journal, February 2004


Tundra permafrost thaw causes significant shifts in energy partitioning
journal, April 2016

  • Stiegler, Christian; Johansson, Margareta; Christensen, Torben R.
  • Tellus B: Chemical and Physical Meteorology, Vol. 68, Issue 1
  • DOI: 10.3402/tellusb.v68.30467

Subsidence risk from thawing permafrost
journal, April 2001

  • Nelson, Frederick E.; Anisimov, Oleg A.; Shiklomanov, Nikolay I.
  • Nature, Vol. 410, Issue 6831
  • DOI: 10.1038/35073746

Significant contribution to climate warming from the permafrost carbon feedback
journal, September 2012

  • MacDougall, Andrew H.; Avis, Christopher A.; Weaver, Andrew J.
  • Nature Geoscience, Vol. 5, Issue 10
  • DOI: 10.1038/ngeo1573

CLIMATE CHANGE: Permafrost and the Global Carbon Budget
journal, June 2006


Carbon release through abrupt permafrost thaw
journal, February 2020

  • Turetsky, Merritt R.; Abbott, Benjamin W.; Jones, Miriam C.
  • Nature Geoscience, Vol. 13, Issue 2
  • DOI: 10.1038/s41561-019-0526-0

Shifts in Arctic vegetation and associated feedbacks under climate change
journal, March 2013

  • Pearson, Richard G.; Phillips, Steven J.; Loranty, Michael M.
  • Nature Climate Change, Vol. 3, Issue 7
  • DOI: 10.1038/nclimate1858

Shallow soil moisture – ground thaw interactions and controls – Part 2: Influences of water and energy fluxes
journal, January 2010

  • Guan, X. J.; Spence, C.; Westbrook, C. J.
  • Hydrology and Earth System Sciences, Vol. 14, Issue 7
  • DOI: 10.5194/hess-14-1387-2010

Modeling topographic effects on net ecosystem productivity of boreal black spruce forests
journal, January 2004


The Influence of Rain Sensible Heat and Subsurface Energy Transport on the Energy Balance at the Land Surface
journal, January 2009

  • Kollet, Stefan J.; Cvijanovic, Ivana; Schüttemeyer, Dirk
  • Vadose Zone Journal, Vol. 8, Issue 4
  • DOI: 10.2136/vzj2009.0005

Modeling Climate Change Impacts on an Arctic Polygonal Tundra: 1. Rates of Permafrost Thaw Depend on Changes in Vegetation and Drainage
journal, May 2019

  • Grant, R. F.; Mekonnen, Z. A.; Riley, W. J.
  • Journal of Geophysical Research: Biogeosciences, Vol. 124, Issue 5
  • DOI: 10.1029/2018JG004644

Applicability of the ecosystem type approach to model permafrost dynamics across the Alaska North Slope: ECOSYSTEM APPROACH TO MODEL PERMAFROST
journal, January 2017

  • Nicolsky, D. J.; Romanovsky, V. E.; Panda, S. K.
  • Journal of Geophysical Research: Earth Surface, Vol. 122, Issue 1
  • DOI: 10.1002/2016JF003852

Locally Downscaled and Spatially Customizable Climate Data for Historical and Future Periods for North America
journal, June 2016


The effect of permafrost thaw on old carbon release and net carbon exchange from tundra
journal, May 2009

  • Schuur, Edward A. G.; Vogel, Jason G.; Crummer, Kathryn G.
  • Nature, Vol. 459, Issue 7246
  • DOI: 10.1038/nature08031

machine.
journal, October 2001


The Impact of Snow Accumulation on the Active Layer Thermal Regime in High Arctic Soils
journal, February 2013

  • Lafrenière, Melissa J.; Laurin, Emil; Lamoureux, Scott F.
  • Vadose Zone Journal, Vol. 12, Issue 1
  • DOI: 10.2136/vzj2012.0058

Earlier snowmelt and warming lead to earlier but not necessarily more plant growth
journal, January 2016

  • Livensperger, Carolyn; Steltzer, Heidi; Darrouzet-Nardi, Anthony
  • AoB Plants, Vol. 8
  • DOI: 10.1093/aobpla/plw021

Effects of permafrost degradation on woody vegetation at arctic treeline on the Seward Peninsula, Alaska
journal, January 2003

  • Lloyd, Andrea H.; Yoshikawa, Kenji; Fastie, Christopher L.
  • Permafrost and Periglacial Processes, Vol. 14, Issue 2
  • DOI: 10.1002/ppp.446

The North American Carbon Program Multi-scale Synthesis and Terrestrial Model Intercomparison Project – Part 2: Environmental driver data
journal, January 2014

  • Wei, Y.; Liu, S.; Huntzinger, D. N.
  • Geoscientific Model Development, Vol. 7, Issue 6
  • DOI: 10.5194/gmd-7-2875-2014

Accelerated Nutrient Cycling and Increased Light Competition Will Lead to 21st Century Shrub Expansion in North American Arctic Tundra
journal, May 2018

  • Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 5
  • DOI: 10.1029/2017JG004319

Temperature sensitivity of soil carbon decomposition and feedbacks to climate change
journal, March 2006


Effects of experimental warming of air, soil and permafrost on carbon balance in Alaskan tundra: WARMING OF ALASKAN TUNDRA
journal, February 2011


Estimating the Permafrost-Carbon Climate Response in the CMIP5 Climate Models Using a Simplified Approach
journal, July 2013


Ecosystem CO 2 and CH 4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements : CO
journal, July 2015

  • Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 7
  • DOI: 10.1002/2014JG002888

Sensitivity of the carbon cycle in the Arctic to climate change
journal, November 2009

  • McGuire, A. David; Anderson, Leif G.; Christensen, Torben R.
  • Ecological Monographs, Vol. 79, Issue 4
  • DOI: 10.1890/08-2025.1

Permafrost collapse is accelerating carbon release
journal, April 2019


Recent trends from Canadian permafrost thermal monitoring network sites
journal, January 2005

  • Smith, Sharon L.; Burgess, Margo M.; Riseborough, Dan
  • Permafrost and Periglacial Processes, Vol. 16, Issue 1
  • DOI: 10.1002/ppp.511

Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire
journal, August 2019


Permafrost carbon-climate feedbacks accelerate global warming
journal, August 2011

  • Koven, C. D.; Ringeval, B.; Friedlingstein, P.
  • Proceedings of the National Academy of Sciences, Vol. 108, Issue 36
  • DOI: 10.1073/pnas.1103910108

Increased precipitation drives mega slump development and destabilization of ice-rich permafrost terrain, northwestern Canada
journal, June 2015


Estimating Active-Layer Thickness over a Large Region: Kuparuk River Basin, Alaska, U.S.A.
journal, November 1997

  • Nelson, F. E.; Shiklomanov, N. I.; Mueller, G. R.
  • Arctic and Alpine Research, Vol. 29, Issue 4
  • DOI: 10.2307/1551985

Warmer climate: less or more snow?
journal, July 2007


High stocks of soil organic carbon in the North American Arctic region
journal, August 2008

  • Ping, Chien-Lu; Michaelson, Gary J.; Jorgenson, Mark T.
  • Nature Geoscience, Vol. 1, Issue 9
  • DOI: 10.1038/ngeo284

Large carbon cycle sensitivities to climate across a permafrost thaw gradient in subarctic Sweden
journal, January 2019

  • Chang, Kuang-Yu; Riley, William J.; Crill, Patrick M.
  • The Cryosphere, Vol. 13, Issue 2
  • DOI: 10.5194/tc-13-647-2019

Evidence and Implications of Recent Climate Change in Northern Alaska and Other Arctic Regions
journal, October 2005


Towards a rain-dominated Arctic
journal, March 2017


Increased rainfall stimulates permafrost thaw across a variety of Interior Alaskan boreal ecosystems
journal, July 2020

  • Douglas, Thomas A.; Turetsky, Merritt R.; Koven, Charles D.
  • npj Climate and Atmospheric Science, Vol. 3, Issue 1
  • DOI: 10.1038/s41612-020-0130-4

21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory
journal, May 2018

  • Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.
  • Environmental Research Letters, Vol. 13, Issue 5
  • DOI: 10.1088/1748-9326/aabf28

Abrupt increases in soil temperatures following increased precipitation in a permafrost region, central Lena River basin, Russia: Abrupt Soil Warming in Eastern Siberia
journal, December 2009

  • Iijima, Yoshihiro; Fedorov, Alexander N.; Park, Hotaek
  • Permafrost and Periglacial Processes, Vol. 21, Issue 1
  • DOI: 10.1002/ppp.662

Past extreme warming events linked to massive carbon release from thawing permafrost
journal, April 2012

  • DeConto, Robert M.; Galeotti, Simone; Pagani, Mark
  • Nature, Vol. 484, Issue 7392
  • DOI: 10.1038/nature10929

Transient projections of permafrost distribution in Canada during the 21st century under scenarios of climate change
journal, February 2008


Shrub tundra snowmelt
journal, January 2006

  • Pomeroy, J. W.; Bewley, D. S.; Essery, R. L. H.
  • Hydrological Processes, Vol. 20, Issue 4
  • DOI: 10.1002/hyp.6124