DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments

Abstract

Climate warming is occurring fastest at high latitudes. Based on short-term field experiments, this warming is projected to stimulate soil organic matter decomposition, and promote a positive feedback to climate change. We show here that the tightly coupled, nonlinear nature of high-latitude ecosystems implies that short-term (<10 year) warming experiments produce emergent ecosystem carbon stock temperature sensitivities inconsistent with emergent multi-decadal responses. We first demonstrate that a well-tested mechanistic ecosystem model accurately represents observed carbon cycle and active layer depth responses to short-term summer warming in four diverse Alaskan sites. We then show that short-term warming manipulations do not capture the non-linear, long-term dynamics of vegetation, and thereby soil organic matter, that occur in response to thermal, hydrological, and nutrient transformations belowground. Our results demonstrate significant spatial heterogeneity in multi-decadal Arctic carbon cycle trajectories and argue for more mechanistic models to improve predictive capabilities.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Univ. of Alberta, Edmonton, AB (Canada)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER)
OSTI Identifier:
1763682
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Nature Communications
Additional Journal Information:
Journal Volume: 11; Journal Issue: 1; Journal ID: ISSN 2041-1723
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; Carbon cycle; cryospheric science; ecological modelling

Citation Formats

Bouskill, Nicholas J., Riley, William J., Zhu, Qing, Mekonnen, Zelalem A., and Grant, Robert F. Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments. United States: N. p., 2020. Web. doi:10.1038/s41467-020-19574-3.
Bouskill, Nicholas J., Riley, William J., Zhu, Qing, Mekonnen, Zelalem A., & Grant, Robert F. Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments. United States. https://doi.org/10.1038/s41467-020-19574-3
Bouskill, Nicholas J., Riley, William J., Zhu, Qing, Mekonnen, Zelalem A., and Grant, Robert F. Mon . "Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments". United States. https://doi.org/10.1038/s41467-020-19574-3. https://www.osti.gov/servlets/purl/1763682.
@article{osti_1763682,
title = {Alaskan carbon-climate feedbacks will be weaker than inferred from short-term experiments},
author = {Bouskill, Nicholas J. and Riley, William J. and Zhu, Qing and Mekonnen, Zelalem A. and Grant, Robert F.},
abstractNote = {Climate warming is occurring fastest at high latitudes. Based on short-term field experiments, this warming is projected to stimulate soil organic matter decomposition, and promote a positive feedback to climate change. We show here that the tightly coupled, nonlinear nature of high-latitude ecosystems implies that short-term (<10 year) warming experiments produce emergent ecosystem carbon stock temperature sensitivities inconsistent with emergent multi-decadal responses. We first demonstrate that a well-tested mechanistic ecosystem model accurately represents observed carbon cycle and active layer depth responses to short-term summer warming in four diverse Alaskan sites. We then show that short-term warming manipulations do not capture the non-linear, long-term dynamics of vegetation, and thereby soil organic matter, that occur in response to thermal, hydrological, and nutrient transformations belowground. Our results demonstrate significant spatial heterogeneity in multi-decadal Arctic carbon cycle trajectories and argue for more mechanistic models to improve predictive capabilities.},
doi = {10.1038/s41467-020-19574-3},
journal = {Nature Communications},
number = 1,
volume = 11,
place = {United States},
year = {Mon Nov 16 00:00:00 EST 2020},
month = {Mon Nov 16 00:00:00 EST 2020}
}

Works referenced in this record:

The RCP greenhouse gas concentrations and their extensions from 1765 to 2300
journal, August 2011


Unexpected reversal of C 3 versus C 4 grass response to elevated CO 2 during a 20-year field experiment
journal, April 2018


Pulse-labeling studies of carbon cycling in arctic tundra ecosystems: Contribution of photosynthates to soil organic matter: PHOTOSYNTHATE CONTRIBUTION TO SOIL C STORAGE
journal, November 2002

  • Loya, Wendy M.; Johnson, Loretta C.; Kling, George W.
  • Global Biogeochemical Cycles, Vol. 16, Issue 4
  • DOI: 10.1029/2001GB001464

Tundra soil carbon is vulnerable to rapid microbial decomposition under climate warming
journal, February 2016

  • Xue, Kai; M. Yuan, Mengting; J. Shi, Zhou
  • Nature Climate Change, Vol. 6, Issue 6
  • DOI: 10.1038/nclimate2940

Recent Declines in Warming and Vegetation Greening Trends over Pan-Arctic Tundra
journal, August 2013

  • Bhatt, Uma; Walker, Donald; Raynolds, Martha
  • Remote Sensing, Vol. 5, Issue 9
  • DOI: 10.3390/rs5094229

Offset of the potential carbon sink from boreal forestation by decreases in surface albedo
journal, November 2000


Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw
journal, November 2011

  • Mackelprang, Rachel; Waldrop, Mark P.; DeAngelis, Kristen M.
  • Nature, Vol. 480, Issue 7377
  • DOI: 10.1038/nature10576

Climate change and the permafrost carbon feedback
journal, April 2015

  • Schuur, E. A. G.; McGuire, A. D.; Schädel, C.
  • Nature, Vol. 520, Issue 7546
  • DOI: 10.1038/nature14338

Temperature response of photosynthesis in C3, C4, and CAM plants: temperature acclimation and temperature adaptation
journal, June 2013

  • Yamori, Wataru; Hikosaka, Kouki; Way, Danielle A.
  • Photosynthesis Research, Vol. 119, Issue 1-2
  • DOI: 10.1007/s11120-013-9874-6

Responses of Arctic Tundra to Experimental and Observed Changes in Climate
journal, April 1995

  • Chapin, F. Stuart; Shaver, Gaius R.; Giblin, Anne E.
  • Ecology, Vol. 76, Issue 3
  • DOI: 10.2307/1939337

Weaker land–climate feedbacks from nutrient uptake during photosynthesis-inactive periods
journal, October 2018


Exploring drivers of litter decomposition in a greening Arctic: results from a transplant experiment across a treeline
journal, August 2018

  • Parker, Thomas C.; Sanderman, Jonathan; Holden, Robert D.
  • Ecology, Vol. 99, Issue 10
  • DOI: 10.1002/ecy.2442

Enhanced root exudation stimulates soil nitrogen transformations in a subalpine coniferous forest under experimental warming
journal, April 2013

  • Yin, Huajun; Li, Yufei; Xiao, Juan
  • Global Change Biology, Vol. 19, Issue 7
  • DOI: 10.1111/gcb.12161

The whole-soil carbon flux in response to warming
journal, March 2017


Interactions among shrub cover and the soil microclimate may determine future Arctic carbon budgets
journal, September 2012


Increased snow depth affects microbial activity and nitrogen mineralization in two Arctic tundra communities
journal, February 2004


The unseen iceberg: plant roots in arctic tundra
journal, September 2014

  • Iversen, Colleen M.; Sloan, Victoria L.; Sullivan, Patrick F.
  • New Phytologist, Vol. 205, Issue 1
  • DOI: 10.1111/nph.13003

Nitrogen and sulfur deposition on regional and global scales: A multimodel evaluation: MULTIMODEL GLOBAL DEPOSITION
journal, October 2006

  • Dentener, F.; Drevet, J.; Lamarque, J. F.
  • Global Biogeochemical Cycles, Vol. 20, Issue 4
  • DOI: 10.1029/2005GB002672

Above- and below-ground responses of four tundra plant functional types to deep soil heating and surface soil fertilization
journal, January 2017


Processes and impacts of Arctic amplification: A research synthesis
journal, May 2011


Experimental Warming Alters Productivity and Isotopic Signatures of Tundra Mosses
journal, May 2015


Eighteen years of ecological monitoring reveals multiple lines of evidence for tundra vegetation change
journal, February 2019

  • Myers‐Smith, Isla H.; Grabowski, Meagan M.; Thomas, Haydn J. D.
  • Ecological Monographs, Vol. 89, Issue 2
  • DOI: 10.1002/ecm.1351

From The Cover: Plant community responses to experimental warming across the tundra biome
journal, January 2006

  • Walker, M. D.; Wahren, C. H.; Hollister, R. D.
  • Proceedings of the National Academy of Sciences, Vol. 103, Issue 5
  • DOI: 10.1073/pnas.0503198103

Phosphorus Availability Determines the Response of Tundra Ecosystem Carbon Stocks to Nitrogen Enrichment
journal, December 2017


Controls on Nitrogen Cycling in Terrestrial Ecosystems: a Synthetic Analysis of Literature data
journal, May 2005

  • Booth, Mary S.; Stark, John M.; Rastetter, Edward
  • Ecological Monographs, Vol. 75, Issue 2
  • DOI: 10.1890/04-0988

Shrub expansion in tundra ecosystems: dynamics, impacts and research priorities
journal, October 2011

  • Myers-Smith, Isla H.; Forbes, Bruce C.; Wilmking, Martin
  • Environmental Research Letters, Vol. 6, Issue 4
  • DOI: 10.1088/1748-9326/6/4/045509

Evidence of the ‘plant economics spectrum’ in a subarctic flora
journal, March 2010


Interactions between Carbon and Nitrogen Mineralization and Soil Organic Matter Chemistry in Arctic Tundra Soils
journal, March 2003


Experiment, monitoring, and gradient methods used to infer climate change effects on plant communities yield consistent patterns
journal, December 2014

  • Elmendorf, Sarah C.; Henry, Gregory H. R.; Hollister, Robert D.
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 2
  • DOI: 10.1073/pnas.1410088112

Drainage enhances modern soil carbon contribution but reduces old soil carbon contribution to ecosystem respiration in tundra ecosystems
journal, February 2019

  • Kwon, Min Jung; Natali, Susan M.; Hicks Pries, Caitlin E.
  • Global Change Biology, Vol. 25, Issue 4
  • DOI: 10.1111/gcb.14578

Long-term warming restructures Arctic tundra without changing net soil carbon storage
journal, May 2013

  • Sistla, Seeta A.; Moore, John C.; Simpson, Rodney T.
  • Nature, Vol. 497, Issue 7451
  • DOI: 10.1038/nature12129

Long-term pattern and magnitude of soil carbon feedback to the climate system in a warming world
journal, October 2017


Meta-analysis of high-latitude nitrogen-addition and warming studies implies ecological mechanisms overlooked by land models
journal, January 2014


Phosphorus Cycling in Alaskan Coastal Tundra: A Hypothesis for the Regulation of Nutrient Cycling
journal, January 1978

  • Chapin, F. S.; Barsdate, R. J.; Barèl, D.
  • Oikos, Vol. 31, Issue 2
  • DOI: 10.2307/3543562

Variable temperature effects of Open Top Chambers at polar and alpine sites explained by irradiance and snow depth
journal, October 2012

  • Bokhorst, Stef; Huiskes, Ad; Aerts, Rien
  • Global Change Biology, Vol. 19, Issue 1
  • DOI: 10.1111/gcb.12028

Plant functional trait change across a warming tundra biome
journal, September 2018


Long-term CO2 production following permafrost thaw
journal, July 2013

  • Elberling, Bo; Michelsen, Anders; Schädel, Christina
  • Nature Climate Change, Vol. 3, Issue 10
  • DOI: 10.1038/nclimate1955

Accelerated Nutrient Cycling and Increased Light Competition Will Lead to 21st Century Shrub Expansion in North American Arctic Tundra
journal, May 2018

  • Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.
  • Journal of Geophysical Research: Biogeosciences, Vol. 123, Issue 5
  • DOI: 10.1029/2017JG004319

Winter forest soil respiration controlled by climate and microbial community composition
journal, February 2006

  • Monson, Russell K.; Lipson, David L.; Burns, Sean P.
  • Nature, Vol. 439, Issue 7077
  • DOI: 10.1038/nature04555

Long-term experimental warming and nutrient additions increase productivity in tall deciduous shrub tundra
journal, June 2014

  • DeMarco, Jennie; Mack, Michelle C.; Bret-Harte, M. Syndonia
  • Ecosphere, Vol. 5, Issue 6
  • DOI: 10.1890/ES13-00281.1

Coupled long-term summer warming and deeper snow alters species composition and stimulates gross primary productivity in tussock tundra
journal, January 2016


Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps
journal, January 2014


Belowground plant biomass allocation in tundra ecosystems and its relationship with temperature
journal, May 2016


TUNDRA CO 2 FLUXES IN RESPONSE TO EXPERIMENTAL WARMING ACROSS LATITUDINAL AND MOISTURE GRADIENTS
journal, May 2007

  • Oberbauer, Steven F.; Tweedie, Craig E.; Welker, Jeff M.
  • Ecological Monographs, Vol. 77, Issue 2
  • DOI: 10.1890/06-0649

Large loss of CO2 in winter observed across the northern permafrost region
journal, October 2019

  • Natali, Susan M.; Watts, Jennifer D.; Rogers, Brendan M.
  • Nature Climate Change, Vol. 9, Issue 11
  • DOI: 10.1038/s41558-019-0592-8

Global negative vegetation feedback to climate warming responses of leaf litter decomposition rates in cold biomes
journal, July 2007


Ecosystem CO 2 and CH 4 exchange in a mixed tundra and a fen within a hydrologically diverse Arctic landscape: 1. Modeling versus measurements : CO
journal, July 2015

  • Grant, R. F.; Humphreys, E. R.; Lafleur, P. M.
  • Journal of Geophysical Research: Biogeosciences, Vol. 120, Issue 7
  • DOI: 10.1002/2014JG002888

No divergence in Cassiope tetragona: persistence of growth response along a latitudinal temperature gradient and under multi-year experimental warming
journal, June 2012

  • Weijers, Stef; Greve Alsos, Inger; Bronken Eidesen, Pernille
  • Annals of Botany, Vol. 110, Issue 3
  • DOI: 10.1093/aob/mcs123

A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region
journal, January 2013

  • Hugelius, G.; Bockheim, J. G.; Camill, P.
  • Earth System Science Data, Vol. 5, Issue 2
  • DOI: 10.5194/essd-5-393-2013

Global assessment of experimental climate warming on tundra vegetation: heterogeneity over space and time: Warming effects on tundra vegetation
journal, December 2011


Warming and drying suppress microbial activity and carbon cycling in boreal forest soils
journal, December 2008


Climate–Carbon Cycle Feedback Analysis: Results from the C 4 MIP Model Intercomparison
journal, July 2006

  • Friedlingstein, P.; Cox, P.; Betts, R.
  • Journal of Climate, Vol. 19, Issue 14
  • DOI: 10.1175/JCLI3800.1

Root Exudation of Primary Metabolites: Mechanisms and Their Roles in Plant Responses to Environmental Stimuli
journal, February 2019

  • Canarini, Alberto; Kaiser, Christina; Merchant, Andrew
  • Frontiers in Plant Science, Vol. 10
  • DOI: 10.3389/fpls.2019.00157

Effects of Temperature and Substrate Quality on Element Mineralization in Six Arctic Soils
journal, February 1991

  • Nadelhoffer, K. J.; Giblin, A. E.; Shaver, G. R.
  • Ecology, Vol. 72, Issue 1
  • DOI: 10.2307/1938918

Long-term in situ permafrost thaw effects on bacterial communities and potential aerobic respiration
journal, June 2018


Nonlinear CO 2 flux response to 7 years of experimentally induced permafrost thaw
journal, March 2017

  • Mauritz, Marguerite; Bracho, Rosvel; Celis, Gerardo
  • Global Change Biology, Vol. 23, Issue 9
  • DOI: 10.1111/gcb.13661

The seasonal dynamics of amino acids and other nutrients in Alaskan Arctic tundra soils
journal, April 2005


Plot-scale evidence of tundra vegetation change and links to recent summer warming
journal, April 2012

  • Elmendorf, Sarah C.; Henry, Gregory H. R.; Hollister, Robert D.
  • Nature Climate Change, Vol. 2, Issue 6
  • DOI: 10.1038/nclimate1465

Old soil carbon losses increase with ecosystem respiration in experimentally thawed tundra
journal, October 2015

  • Hicks Pries, Caitlin E.; Schuur, Edward A. G.; Natali, Susan M.
  • Nature Climate Change, Vol. 6, Issue 2
  • DOI: 10.1038/nclimate2830

Greening of the Earth and its drivers
journal, April 2016

  • Zhu, Zaichun; Piao, Shilong; Myneni, Ranga B.
  • Nature Climate Change, Vol. 6, Issue 8
  • DOI: 10.1038/nclimate3004

Increased plant biomass in a High Arctic heath community from 1981 to 2008
journal, October 2009

  • Hudson, J. M. G.; Henry, G. H. R.
  • Ecology, Vol. 90, Issue 10
  • DOI: 10.1890/09-0102.1

Presence of Eriophorum scheuchzeri enhances substrate availability and methane emission in an Arctic wetland
journal, February 2012


The hidden season: growing season is 50% longer below than above ground along an arctic elevation gradient
journal, September 2015

  • Blume‐Werry, Gesche; Wilson, Scott D.; Kreyling, Juergen
  • New Phytologist, Vol. 209, Issue 3
  • DOI: 10.1111/nph.13655

Increased plant productivity in Alaskan tundra as a result of experimental warming of soil and permafrost: Increased plant productivity in Alaskan tundra
journal, November 2011


Early Spring Nitrogen Uptake by Snow-Covered Plants: A Comparison of Arctic and Alpine Plant Function under the Snowpack
journal, November 2000

  • Bilbrough, Carol J.; Welker, Jeffrey M.; Bowman, William D.
  • Arctic, Antarctic, and Alpine Research, Vol. 32, Issue 4
  • DOI: 10.1080/15230430.2000.12003384

21st century tundra shrubification could enhance net carbon uptake of North America Arctic tundra under an RCP8.5 climate trajectory
journal, May 2018

  • Mekonnen, Zelalem A.; Riley, William J.; Grant, Robert F.
  • Environmental Research Letters, Vol. 13, Issue 5
  • DOI: 10.1088/1748-9326/aabf28

Carbon cycle uncertainty in the Alaskan Arctic
journal, January 2014