DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage

Abstract

Layered transition metal oxides have drawn much attention as a promising candidate cathode material for sodium-ion batteries. However, their performance degradation originating from strains and lattice phase transitions remains a critical challenge. Herein, a high-concentration Zn-substituted NaxMnO2 cathode with strongly suppressed P2–O2 transition is investigated, which exhibits a volume change as low as 1.0% in the charge/discharge process. Additionally, such ultralow strain characteristics ensure a stable host for sodium ion storage, which significantly improves the cycling stability and rate capability of the cathode material. Also, the strong coupling between the highly reversible capacity and the doping content of Zn in NaxMnO2 is investigated. It is suggested that a reversible anionic redox reaction can be effectively triggered by Zn ions and is also highly dependent on the Zn content. Such an ion doping strategy could shed light on the design and construction of stable and high-capacity sodium ion host.

Authors:
 [1];  [2];  [2];  [1];  [1];  [3];  [3];  [4];  [4];  [5];  [1];  [1]; ORCiD logo [1]
  1. Wuhan Univ. (China). Hubei Key Lab. of Electrochemical Power Sources
  2. City Univ. of Hong Kong (Hong Kong)
  3. Xiamen Univ. (China)
  4. Argonne National Lab. (ANL), Lemont, IL (United States)
  5. City Univ. of Hong Kong (Hong Kong); City Univ. of Hong Kong (Hong Kong). Shenzhen Research Inst.
Publication Date:
Research Org.:
Argonne National Laboratory (ANL), Argonne, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; National Natural Science Foundation of China (NSFC); National Key Research and Development Program of China
OSTI Identifier:
1763386
Alternate Identifier(s):
OSTI ID: 1599465
Grant/Contract Number:  
AC02-06CH11357; 21673165; 21972108; 2016YFB0901500; 9610399; DE‐AC02‐06CH11357
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Functional Materials
Additional Journal Information:
Journal Volume: 30; Journal Issue: 13; Journal ID: ISSN 1616-301X
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE; sodium ion batteries; ultralow strain; substitution; phase transition

Citation Formats

Wang, Yanxia, Wang, Liguang, Zhu, He, Chu, Jun, Fang, Yongjin, Wu, Lina, Huang, Ling, Ren, Yang, Sun, Cheng‐Jun, Liu, Qi, Ai, Xinping, Yang, Hanxi, and Cao, Yuliang. Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. United States: N. p., 2020. Web. doi:10.1002/adfm.201910327.
Wang, Yanxia, Wang, Liguang, Zhu, He, Chu, Jun, Fang, Yongjin, Wu, Lina, Huang, Ling, Ren, Yang, Sun, Cheng‐Jun, Liu, Qi, Ai, Xinping, Yang, Hanxi, & Cao, Yuliang. Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage. United States. https://doi.org/10.1002/adfm.201910327
Wang, Yanxia, Wang, Liguang, Zhu, He, Chu, Jun, Fang, Yongjin, Wu, Lina, Huang, Ling, Ren, Yang, Sun, Cheng‐Jun, Liu, Qi, Ai, Xinping, Yang, Hanxi, and Cao, Yuliang. Wed . "Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage". United States. https://doi.org/10.1002/adfm.201910327. https://www.osti.gov/servlets/purl/1763386.
@article{osti_1763386,
title = {Ultralow-Strain Zn-Substituted Layered Oxide Cathode with Suppressed P2–O2 Transition for Stable Sodium Ion Storage},
author = {Wang, Yanxia and Wang, Liguang and Zhu, He and Chu, Jun and Fang, Yongjin and Wu, Lina and Huang, Ling and Ren, Yang and Sun, Cheng‐Jun and Liu, Qi and Ai, Xinping and Yang, Hanxi and Cao, Yuliang},
abstractNote = {Layered transition metal oxides have drawn much attention as a promising candidate cathode material for sodium-ion batteries. However, their performance degradation originating from strains and lattice phase transitions remains a critical challenge. Herein, a high-concentration Zn-substituted NaxMnO2 cathode with strongly suppressed P2–O2 transition is investigated, which exhibits a volume change as low as 1.0% in the charge/discharge process. Additionally, such ultralow strain characteristics ensure a stable host for sodium ion storage, which significantly improves the cycling stability and rate capability of the cathode material. Also, the strong coupling between the highly reversible capacity and the doping content of Zn in NaxMnO2 is investigated. It is suggested that a reversible anionic redox reaction can be effectively triggered by Zn ions and is also highly dependent on the Zn content. Such an ion doping strategy could shed light on the design and construction of stable and high-capacity sodium ion host.},
doi = {10.1002/adfm.201910327},
journal = {Advanced Functional Materials},
number = 13,
volume = 30,
place = {United States},
year = {Wed Feb 12 00:00:00 EST 2020},
month = {Wed Feb 12 00:00:00 EST 2020}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Citation Metrics:
Cited by: 107 works
Citation information provided by
Web of Science

Save / Share:

Works referenced in this record:

Anisotropic Lattice Strain and Mechanical Degradation of High- and Low-Nickel NCM Cathode Materials for Li-Ion Batteries
journal, February 2017

  • Kondrakov, Aleksandr O.; Schmidt, Alexander; Xu, Jin
  • The Journal of Physical Chemistry C, Vol. 121, Issue 6
  • DOI: 10.1021/acs.jpcc.6b12885

A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries
journal, January 2015

  • Han, Man Huon; Gonzalo, Elena; Singh, Gurpreet
  • Energy & Environmental Science, Vol. 8, Issue 1
  • DOI: 10.1039/C4EE03192J

Sodium and Sodium-Ion Batteries: 50 Years of Research
journal, February 2018


Crystallographic Evolution of P2 Na 2/3 Fe 0.4 Mn 0.6 O 2 Electrodes during Electrochemical Cycling
journal, August 2016


Electrochemical Properties of Monoclinic NaMnO2
journal, January 2011

  • Ma, Xiaohua; Chen, Hailong; Ceder, Gerbrand
  • Journal of The Electrochemical Society, Vol. 158, Issue 12
  • DOI: 10.1149/2.035112jes

A new electrode material for rechargeable sodium batteries: P2-type Na 2/3 [Mg 0.28 Mn 0.72 ]O 2 with anomalously high reversible capacity
journal, January 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kubota, Kei
  • J. Mater. Chem. A, Vol. 2, Issue 40
  • DOI: 10.1039/C4TA04351K

Native Vacancy Enhanced Oxygen Redox Reversibility and Structural Robustness
journal, December 2018

  • Li, Yejing; Wang, Xuefeng; Gao, Yurui
  • Advanced Energy Materials, Vol. 9, Issue 4
  • DOI: 10.1002/aenm.201803087

Anionic Redox Activity in a Newly Zn-Doped Sodium Layered Oxide P2-Na 2/3 Mn 1− y Zn y O 2 (0 < y < 0.23)
journal, October 2018

  • Bai, Xue; Sathiya, Mariyappan; Mendoza-Sánchez, Beatriz
  • Advanced Energy Materials, Vol. 8, Issue 32
  • DOI: 10.1002/aenm.201802379

Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition
journal, February 2019


Electrode Properties of P2–Na 2/3 Mn y Co 1– y O 2 as Cathode Materials for Sodium-Ion Batteries
journal, July 2013

  • Wang, Xianfen; Tamaru, Mao; Okubo, Masashi
  • The Journal of Physical Chemistry C, Vol. 117, Issue 30
  • DOI: 10.1021/jp406433z

Synthesis and characterization of high-temperature hexagonal P2-Na0.6 MnO2 and its electrochemical behaviour as cathode in sodium cells
journal, February 2002

  • Caballero, A.; Hernán, L.; Morales, J.
  • Journal of Materials Chemistry, Vol. 12, Issue 4
  • DOI: 10.1039/b108830k

High‐Abundance and Low‐Cost Metal‐Based Cathode Materials for Sodium‐Ion Batteries: Problems, Progress, and Key Technologies
journal, February 2019

  • Chen, Mingzhe; Liu, Qiannan; Wang, Shi‐Wen
  • Advanced Energy Materials, Vol. 9, Issue 14
  • DOI: 10.1002/aenm.201803609

Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
journal, January 2018

  • Maitra, Urmimala; House, Robert A.; Somerville, James W.
  • Nature Chemistry, Vol. 10, Issue 3
  • DOI: 10.1038/nchem.2923

Structurally stable Mg-doped P2-Na 2/3 Mn 1−y Mg y O 2 sodium-ion battery cathodes with high rate performance: insights from electrochemical, NMR and diffraction studies
journal, January 2016

  • Clément, Raphaële J.; Billaud, Juliette; Robert Armstrong, A.
  • Energy & Environmental Science, Vol. 9, Issue 10
  • DOI: 10.1039/C6EE01750A

New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries
journal, May 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kajiyama, Masataka
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201301453

Routes to High Energy Cathodes of Sodium-Ion Batteries
journal, December 2015

  • Fang, Chun; Huang, Yunhui; Zhang, Wuxing
  • Advanced Energy Materials, Vol. 6, Issue 5
  • DOI: 10.1002/aenm.201501727

Exploring Oxygen Activity in the High Energy P2-Type Na 0.78 Ni 0.23 Mn 0.69 O 2 Cathode Material for Na-Ion Batteries
journal, March 2017

  • Ma, Chuze; Alvarado, Judith; Xu, Jing
  • Journal of the American Chemical Society, Vol. 139, Issue 13
  • DOI: 10.1021/jacs.7b00164

Sodium and Manganese Stoichiometry of P2-Type Na 2/3 MnO 2
journal, September 2016

  • Kumakura, Shinichi; Tahara, Yoshiyuki; Kubota, Kei
  • Angewandte Chemie International Edition, Vol. 55, Issue 41
  • DOI: 10.1002/anie.201606415

MXene encapsulated titanium oxide nanospheres for ultra-stable and fast sodium storage
journal, September 2018


Deformation and stress in electrode materials for Li-ion batteries
journal, June 2014


Recent Progress of Layered Transition Metal Oxide Cathodes for Sodium‐Ion Batteries
journal, February 2019


P2-type Nax[Fe1/2Mn1/2]O2 made from earth-abundant elements for rechargeable Na batteries
journal, April 2012

  • Yabuuchi, Naoaki; Kajiyama, Masataka; Iwatate, Junichi
  • Nature Materials, Vol. 11, Issue 6
  • DOI: 10.1038/nmat3309

X-ray absorption near-edge structures of LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 spinel oxides for lithium-ion batteries: the first-principles calculation study
journal, January 2016

  • Okumura, Toyoki; Yamaguchi, Yoichi; Kobayashi, Hironori
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 27
  • DOI: 10.1039/C6CP01756H

Design Strategies to Enable the Efficient Use of Sodium Metal Anodes in High‐Energy Batteries
journal, October 2019


P′2-Na 2/3 Mn 0.9 Me 0.1 O 2 (Me = Mg, Ti, Co, Ni, Cu, and Zn): Correlation between Orthorhombic Distortion and Electrochemical Property
journal, October 2017


Electrochemical and thermal properties of P2-type Na2/3Fe1/3Mn2/3O2 for Na-ion batteries
journal, October 2014


Structure–Electrochemical Evolution of a Mn-Rich P2 Na 2/3 Fe 0.2 Mn 0.8 O 2 Na-Ion Battery Cathode
journal, August 2017


Realizing Three-Electron Redox Reactions in NASICON-Structured Na 3 MnTi(PO 4 ) 3 for Sodium-Ion Batteries
journal, January 2019


Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

Recent Advances in Sodium-Ion Battery Materials
journal, June 2018


Structural classification and properties of the layered oxides
journal, January 1980


Highly Reversible Oxygen-Redox Chemistry at 4.1 V in Na 4/7− x [□ 1/7 Mn 6/7 ]O 2 (□: Mn Vacancy)
journal, April 2018

  • Mortemard de Boisse, Benoit; Nishimura, Shin-ichi; Watanabe, Eriko
  • Advanced Energy Materials, Vol. 8, Issue 20
  • DOI: 10.1002/aenm.201800409

High Performance Li 2 Ru 1– y Mn y O 3 (0.2 ≤ y ≤ 0.8) Cathode Materials for Rechargeable Lithium-Ion Batteries: Their Understanding
journal, March 2013

  • Sathiya, M.; Ramesha, K.; Rousse, G.
  • Chemistry of Materials, Vol. 25, Issue 7
  • DOI: 10.1021/cm400193m

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f