DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: High-Capacity P2-Type NaxLi0.25Mn0.75O2 Cathode Enabled by Anionic Oxygen Redox

Abstract

Sodium-ion battery technology has attracted significant attention due to its substantial cost advantage and similar operating mechanism to Li-ion batteries. P2-type sodium manganese oxide cathode is one of the most promising candidates, demonstrating both high capacity and good cycling stability. Here, we explore the lattice oxygen activity in layered sodium transition metal oxides. We synthesize a series of sodium lithium manganese oxides, NaxLi0.25Mn0.75O2 (x = 0.75 – 0.833), to optimize Na content. We further investigate the charge compensation mechanism for the best performing Na0.75Li0.25Mn0.75O2 over an extensive electrochemical cycling window. The large charge and discharge capacity is enabled by reversible lattice oxygen redox in the high voltage region (≥2.5 V), along with Mn redox at the voltages below 2.5 V. Additionally, we reveal a small amount of oxygen gas evolution, 0.04% of the total oxygen in Na0.25Li0.25Mn0.75O2. This initial study will trigger an interest in the lattice oxygen activity in layered sodium metal oxide cathode, therefore, leading to better understanding of its correlation with crystal structure and electrochemical performance.

Authors:
 [1];  [2];  [3]; ORCiD logo [4];  [5]; ORCiD logo [3]
  1. Wuhan Univ. (China); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of California, Berkeley, CA (United States)
  4. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  5. Wuhan Univ. (China)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC)
OSTI Identifier:
1760177
Grant/Contract Number:  
AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Journal of the Electrochemical Society (Online)
Additional Journal Information:
Journal Name: Journal of the Electrochemical Society (Online); Journal Volume: 166; Journal Issue: 16; Journal ID: ISSN 1945-7111
Publisher:
IOP Publishing
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Chen, Xiaoli, Li, Ning, Kedzie, Elyse, McCloskey, Bryan D., Tang, Haolin, and Tong, Wei. High-Capacity P2-Type NaxLi0.25Mn0.75O2 Cathode Enabled by Anionic Oxygen Redox. United States: N. p., 2020. Web. doi:10.1149/2.0611916jes.
Chen, Xiaoli, Li, Ning, Kedzie, Elyse, McCloskey, Bryan D., Tang, Haolin, & Tong, Wei. High-Capacity P2-Type NaxLi0.25Mn0.75O2 Cathode Enabled by Anionic Oxygen Redox. United States. https://doi.org/10.1149/2.0611916jes
Chen, Xiaoli, Li, Ning, Kedzie, Elyse, McCloskey, Bryan D., Tang, Haolin, and Tong, Wei. Thu . "High-Capacity P2-Type NaxLi0.25Mn0.75O2 Cathode Enabled by Anionic Oxygen Redox". United States. https://doi.org/10.1149/2.0611916jes. https://www.osti.gov/servlets/purl/1760177.
@article{osti_1760177,
title = {High-Capacity P2-Type NaxLi0.25Mn0.75O2 Cathode Enabled by Anionic Oxygen Redox},
author = {Chen, Xiaoli and Li, Ning and Kedzie, Elyse and McCloskey, Bryan D. and Tang, Haolin and Tong, Wei},
abstractNote = {Sodium-ion battery technology has attracted significant attention due to its substantial cost advantage and similar operating mechanism to Li-ion batteries. P2-type sodium manganese oxide cathode is one of the most promising candidates, demonstrating both high capacity and good cycling stability. Here, we explore the lattice oxygen activity in layered sodium transition metal oxides. We synthesize a series of sodium lithium manganese oxides, NaxLi0.25Mn0.75O2 (x = 0.75 – 0.833), to optimize Na content. We further investigate the charge compensation mechanism for the best performing Na0.75Li0.25Mn0.75O2 over an extensive electrochemical cycling window. The large charge and discharge capacity is enabled by reversible lattice oxygen redox in the high voltage region (≥2.5 V), along with Mn redox at the voltages below 2.5 V. Additionally, we reveal a small amount of oxygen gas evolution, 0.04% of the total oxygen in Na0.25Li0.25Mn0.75O2. This initial study will trigger an interest in the lattice oxygen activity in layered sodium metal oxide cathode, therefore, leading to better understanding of its correlation with crystal structure and electrochemical performance.},
doi = {10.1149/2.0611916jes},
journal = {Journal of the Electrochemical Society (Online)},
number = 16,
volume = 166,
place = {United States},
year = {Thu Jan 02 00:00:00 EST 2020},
month = {Thu Jan 02 00:00:00 EST 2020}
}

Works referenced in this record:

Sodium and Sodium-Ion Batteries: 50 Years of Research
journal, February 2018


Investigation of the Charge Compensation Mechanism on the Electrochemically Li-Ion Deintercalated Li 1 - x Co 1/3 Ni 1/3 Mn 1/3 O 2 Electrode System by Combination of Soft and Hard X-ray Absorption Spectroscopy
journal, December 2005

  • Yoon, Won-Sub; Balasubramanian, Mahalingam; Chung, Kyung Yoon
  • Journal of the American Chemical Society, Vol. 127, Issue 49
  • DOI: 10.1021/ja0530568

A high-capacity P2 Na2/3Ni1/3Mn2/3O2 cathode material for sodium ion batteries with oxygen activity
journal, August 2018


Charge Heterogeneity and Surface Chemistry in Polycrystalline Cathode Materials
journal, March 2018


Electrochemistry and Solid‐State Chemistry of NaMeO 2 (Me = 3d Transition Metals)
journal, June 2018

  • Kubota, Kei; Kumakura, Shinichi; Yoda, Yusuke
  • Advanced Energy Materials, Vol. 8, Issue 17
  • DOI: 10.1002/aenm.201703415

Review—Manganese-Based P2-Type Transition Metal Oxides as Sodium-Ion Battery Cathode Materials
journal, January 2015

  • Clément, Raphaële J.; Bruce, Peter G.; Grey, Clare P.
  • Journal of The Electrochemical Society, Vol. 162, Issue 14
  • DOI: 10.1149/2.0201514jes

Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen
journal, March 2016

  • Luo, Kun; Roberts, Matthew R.; Hao, Rong
  • Nature Chemistry, Vol. 8, Issue 7
  • DOI: 10.1038/nchem.2471

Soft X-Ray Irradiation Effects of Li2O2, Li2CO3 and Li2O Revealed by Absorption Spectroscopy
journal, November 2012


Surface reconstruction and chemical evolution of stoichiometric layered cathode materials for lithium-ion batteries
journal, March 2014

  • Lin, Feng; Markus, Isaac M.; Nordlund, Dennis
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4529

Anionic Redox Reaction-Induced High-Capacity and Low-Strain Cathode with Suppressed Phase Transition
journal, February 2019


Synthesis and electrochemistry of Li3MnO4: Mn in the +5 oxidation state
journal, October 2007


Lithium-Doping Stabilized High-Performance P2–Na 0.66 Li 0.18 Fe 0.12 Mn 0.7 O 2 Cathode for Sodium Ion Batteries
journal, April 2019

  • Yang, Lufeng; Li, Xiang; Liu, Jue
  • Journal of the American Chemical Society, Vol. 141, Issue 16
  • DOI: 10.1021/jacs.9b01855

Oxygen redox chemistry without excess alkali-metal ions in Na2/3[Mg0.28Mn0.72]O2
journal, January 2018

  • Maitra, Urmimala; House, Robert A.; Somerville, James W.
  • Nature Chemistry, Vol. 10, Issue 3
  • DOI: 10.1038/nchem.2923

New O2/P2-type Li-Excess Layered Manganese Oxides as Promising Multi-Functional Electrode Materials for Rechargeable Li/Na Batteries
journal, May 2014

  • Yabuuchi, Naoaki; Hara, Ryo; Kajiyama, Masataka
  • Advanced Energy Materials, Vol. 4, Issue 13
  • DOI: 10.1002/aenm.201301453

Understanding the Degradation Mechanism of Lithium Nickel Oxide Cathodes for Li-Ion Batteries
journal, November 2016

  • Xu, Jing; Hu, Enyuan; Nordlund, Dennis
  • ACS Applied Materials & Interfaces, Vol. 8, Issue 46
  • DOI: 10.1021/acsami.6b11111

Sodium and Manganese Stoichiometry of P2-Type Na 2/3 MnO 2
journal, September 2016

  • Kumakura, Shinichi; Tahara, Yoshiyuki; Kubota, Kei
  • Angewandte Chemie International Edition, Vol. 55, Issue 41
  • DOI: 10.1002/anie.201606415

Chemical versus Electrochemical Electrolyte Oxidation on NMC111, NMC622, NMC811, LNMO, and Conductive Carbon
journal, September 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 19
  • DOI: 10.1021/acs.jpclett.7b01927

Elucidating anionic oxygen activity in lithium-rich layered oxides
journal, March 2018


A novel P3-type Na 2/3 Mg 1/3 Mn 2/3 O 2 as high capacity sodium-ion cathode using reversible oxygen redox
journal, January 2019

  • Song, Bohang; Hu, Enyuan; Liu, Jue
  • Journal of Materials Chemistry A, Vol. 7, Issue 4
  • DOI: 10.1039/C8TA09422E

Toward high energy density cathode materials for sodium-ion batteries: investigating the beneficial effect of aluminum doping on the P2-type structure
journal, January 2017

  • Hasa, Ivana; Passerini, Stefano; Hassoun, Jusef
  • Journal of Materials Chemistry A, Vol. 5, Issue 9
  • DOI: 10.1039/C6TA08667E

Residual Lithium Carbonate Predominantly Accounts for First Cycle CO 2 and CO Outgassing of Li-Stoichiometric and Li-Rich Layered Transition-Metal Oxides
journal, November 2017

  • Renfrew, Sara E.; McCloskey, Bryan D.
  • Journal of the American Chemical Society, Vol. 139, Issue 49
  • DOI: 10.1021/jacs.7b08461

Sodium-ion batteries: present and future
journal, January 2017

  • Hwang, Jang-Yeon; Myung, Seung-Taek; Sun, Yang-Kook
  • Chemical Society Reviews, Vol. 46, Issue 12
  • DOI: 10.1039/C6CS00776G

Sodium metal anodes for room-temperature sodium-ion batteries: Applications, challenges and solutions
journal, January 2019


A review of Ni-based layered oxides for rechargeable Li-ion batteries
journal, January 2017

  • Xu, Jing; Lin, Feng; Doeff, Marca M.
  • Journal of Materials Chemistry A, Vol. 5, Issue 3
  • DOI: 10.1039/C6TA07991A

Oxygen Release and Its Effect on the Cycling Stability of LiNi x Mn y Co z O 2 (NMC) Cathode Materials for Li-Ion Batteries
journal, January 2017

  • Jung, Roland; Metzger, Michael; Maglia, Filippo
  • Journal of The Electrochemical Society, Vol. 164, Issue 7
  • DOI: 10.1149/2.0021707jes

Electrode Materials for Rechargeable Sodium-Ion Batteries: Potential Alternatives to Current Lithium-Ion Batteries
journal, May 2012

  • Kim, Sung-Wook; Seo, Dong-Hwa; Ma, Xiaohua
  • Advanced Energy Materials, Vol. 2, Issue 7, p. 710-721
  • DOI: 10.1002/aenm.201200026

Sodium-ion diffusion and ordering in single-crystal P 2 -Na x CoO 2
journal, August 2008


Structure of the high voltage phase of layered P2-Na 2/3−z [Mn 1/2 Fe 1/2 ]O 2 and the positive effect of Ni substitution on its stability
journal, January 2015

  • Talaie, Elahe; Duffort, Victor; Smith, Hillary L.
  • Energy & Environmental Science, Vol. 8, Issue 8
  • DOI: 10.1039/C5EE01365H

Research Development on Sodium-Ion Batteries
journal, October 2014

  • Yabuuchi, Naoaki; Kubota, Kei; Dahbi, Mouad
  • Chemical Reviews, Vol. 114, Issue 23
  • DOI: 10.1021/cr500192f

Investigating Li 2 NiO 2 –Li 2 CuO 2 Solid Solutions as High-Capacity Cathode Materials for Li-Ion Batteries
journal, May 2017

  • Xu, Jing; Renfrew, Sara; Marcus, Matthew A.
  • The Journal of Physical Chemistry C, Vol. 121, Issue 21
  • DOI: 10.1021/acs.jpcc.7b01799