DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries

Abstract

Development of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1–x–y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. In this work, we discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability.

Authors:
ORCiD logo [1];  [1];  [1];  [2]; ORCiD logo [3];  [4];  [4];  [4]; ORCiD logo [4];  [4]; ORCiD logo [5];  [5]; ORCiD logo [6]; ORCiD logo [7];  [1]; ORCiD logo [1]
  1. Hanyang Univ., Seoul (South Korea)
  2. Freie Univ., Berlin (Germany)
  3. Freie Univ., Berlin (Germany); Forschungszentrum Juelich (Germany)
  4. Bar-Ilan Univ., Ramat-Gan (Israel)
  5. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  6. Pohang Accelerator Lab. (PAL) (South Korea)
  7. Pusan National Univ., Busan (Korea, Republic of)
Publication Date:
Research Org.:
Pacific Northwest National Laboratory (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE; Ministry of Trade; China Scholarship Council (CSC); Federal Ministry of Education and Research (BMBF); Israel Committee for High Education; Israel Prime Minister Office
OSTI Identifier:
1757972
Report Number(s):
PNNL-SA-129318
Journal ID: ISSN 1754-5692
Grant/Contract Number:  
AC05-76RL01830
Resource Type:
Accepted Manuscript
Journal Name:
Energy & Environmental Science
Additional Journal Information:
Journal Volume: 11; Journal Issue: 5; Journal ID: ISSN 1754-5692
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
25 ENERGY STORAGE

Citation Formats

Kim, Un-Hyuck, Jun, Do-Wook, Park, Kang-Joon, Zhang, Q., Kaghazchi, Payam, Aurbach, Doron, Major, Dan T., Goobes, Gil, Dixit, Mudit, Leifer, Nicole, Wang, Chongmin, Yan, Pengfei, Ahn, Docheon, Kim, Kwang Ho, Yoon, Chong S., and Sun, Yang-Kook. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. United States: N. p., 2018. Web. doi:10.1039/c8ee00227d.
Kim, Un-Hyuck, Jun, Do-Wook, Park, Kang-Joon, Zhang, Q., Kaghazchi, Payam, Aurbach, Doron, Major, Dan T., Goobes, Gil, Dixit, Mudit, Leifer, Nicole, Wang, Chongmin, Yan, Pengfei, Ahn, Docheon, Kim, Kwang Ho, Yoon, Chong S., & Sun, Yang-Kook. Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries. United States. https://doi.org/10.1039/c8ee00227d
Kim, Un-Hyuck, Jun, Do-Wook, Park, Kang-Joon, Zhang, Q., Kaghazchi, Payam, Aurbach, Doron, Major, Dan T., Goobes, Gil, Dixit, Mudit, Leifer, Nicole, Wang, Chongmin, Yan, Pengfei, Ahn, Docheon, Kim, Kwang Ho, Yoon, Chong S., and Sun, Yang-Kook. Mon . "Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries". United States. https://doi.org/10.1039/c8ee00227d. https://www.osti.gov/servlets/purl/1757972.
@article{osti_1757972,
title = {Pushing the limit of layered transition metal oxide cathodes for high-energy density rechargeable Li ion batteries},
author = {Kim, Un-Hyuck and Jun, Do-Wook and Park, Kang-Joon and Zhang, Q. and Kaghazchi, Payam and Aurbach, Doron and Major, Dan T. and Goobes, Gil and Dixit, Mudit and Leifer, Nicole and Wang, Chongmin and Yan, Pengfei and Ahn, Docheon and Kim, Kwang Ho and Yoon, Chong S. and Sun, Yang-Kook},
abstractNote = {Development of advanced high energy density lithium ion batteries is important for promoting electromobility. Making electric vehicles attractive and competitive compared to conventional automobiles depends on the availability of reliable, safe, high power, and highly energetic batteries whose components are abundant and cost effective. Nickel rich Li[NixCoyMn1–x–y]O2 layered cathode materials (x > 0.5) are of interest because they can provide very high specific capacity without pushing charging potentials to levels that oxidize the electrolyte solutions. However, these cathode materials suffer from stability problems. In this work, we discovered that doping these materials with tungsten (1 mol%) remarkably increases their stability due to a partial layered to cubic (rock salt) phase transition. We demonstrate herein highly stable Li ion battery prototypes consisting of tungsten-stabilized Ni rich cathode materials (x > 0.9) with specific capacities >220 mA h g-1. This development can increase the energy density of Li ion batteries more than 30% above the state of the art without compromising durability.},
doi = {10.1039/c8ee00227d},
journal = {Energy & Environmental Science},
number = 5,
volume = 11,
place = {United States},
year = {Mon Mar 12 00:00:00 EDT 2018},
month = {Mon Mar 12 00:00:00 EDT 2018}
}

Works referenced in this record:

Three-dimensionally ordered macroporous FeF3 and its in situ homogenous polymerization coating for high energy and power density lithium ion batteries
journal, January 2012

  • Ma, De-long; Cao, Zhan-yi; Wang, Heng-guo
  • Energy & Environmental Science, Vol. 5, Issue 9
  • DOI: 10.1039/c2ee22568a

Homogeneous CoO on Graphene for Binder-Free and Ultralong-Life Lithium Ion Batteries
journal, April 2013

  • Huang, Xiao-lei; Wang, Ru-zhi; Xu, Dan
  • Advanced Functional Materials, Vol. 23, Issue 35
  • DOI: 10.1002/adfm.201203777

Dendritic Ni-P-Coated Melamine Foam for a Lightweight, Low-Cost, and Amphipathic Three-Dimensional Current Collector for Binder-Free Electrodes
journal, September 2014

  • Huang, Xiao-lei; Xu, Dan; Yuan, Shuang
  • Advanced Materials, Vol. 26, Issue 42, p. 7264-7270
  • DOI: 10.1002/adma.201402717

Electrospun materials for lithium and sodium rechargeable batteries: from structure evolution to electrochemical performance
journal, January 2015

  • Wang, Heng-Guo; Yuan, Shuang; Ma, De-Long
  • Energy & Environmental Science, Vol. 8, Issue 6
  • DOI: 10.1039/C4EE03912B

A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries
journal, August 2016


Rechargeable LiNiO[sub 2]∕Carbon Cells
journal, January 1991

  • Dahn, J. R.
  • Journal of The Electrochemical Society, Vol. 138, Issue 8
  • DOI: 10.1149/1.2085950

Electrochemistry and Structural Chemistry of LiNiO[sub 2] (R3m) for 4 Volt Secondary Lithium Cells
journal, January 1993

  • Ohzuku, Tsutomu
  • Journal of The Electrochemical Society, Vol. 140, Issue 7
  • DOI: 10.1149/1.2220730

Low-Temperature Synthesis of LiNiO[sub 2]
journal, January 1997

  • Palacín, M. R.
  • Journal of The Electrochemical Society, Vol. 144, Issue 12
  • DOI: 10.1149/1.1838171

Crystal structure of Li x Ni 2 x O 2 and a lattice-gas model for the order-disorder transition
journal, August 1992


Comparative study of LiCoO2, LiNi12Co12O2 and LiNiO2 for 4 volt secondary lithium cells
journal, June 1993


Electrochemical and Thermal Behavior of LiNi[sub 1−z]M[sub z]O[sub 2] (M = Co, Mn, Ti)
journal, January 1997

  • Arai, Hajime
  • Journal of The Electrochemical Society, Vol. 144, Issue 9
  • DOI: 10.1149/1.1837968

Structural and Electrochemical Characterization of the LiNi 1 - y Ti y O 2 Electrode Materials Obtained by Direct Solid-State Reactions
journal, May 2002

  • Croguennec, L.; Suard, E.; Willmann, P.
  • Chemistry of Materials, Vol. 14, Issue 5
  • DOI: 10.1021/cm011265v

Relationship between non-stoichiometry and physical properties in LiNiO2
journal, May 1995


The Study of Surface Phenomena Related to Electrochemical Lithium Intercalation into Li[sub x]MO[sub y] Host Materials (M = Ni, Mn)
journal, January 2000

  • Aurbach, Doron; Gamolsky, Kira; Markovsky, Boris
  • Journal of The Electrochemical Society, Vol. 147, Issue 4
  • DOI: 10.1149/1.1393357

Advanced Concentration Gradient Cathode Material with Two-Slope for High-Energy and Safe Lithium Batteries
journal, June 2015

  • Lim, Byung-Beom; Yoon, Sung-Jun; Park, Kang-Joon
  • Advanced Functional Materials, Vol. 25, Issue 29
  • DOI: 10.1002/adfm.201501430

High-energy-density lithium-ion battery using a carbon-nanotube–Si composite anode and a compositionally graded Li[Ni 0.85 Co 0.05 Mn 0.10 ]O 2 cathode
journal, January 2016

  • Lee, Joo Hyeong; Yoon, Chong S.; Hwang, Jang-Yeon
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C6EE01134A

Phase Relationship and Lithium Deintercalation in Lithium Nickel Oxides
journal, June 1994

  • Kanno, R.; Kubo, H.; Kawamoto, Y.
  • Journal of Solid State Chemistry, Vol. 110, Issue 2
  • DOI: 10.1006/jssc.1994.1162

Density functional theory study of flat and stepped NaCl(001)
journal, August 2007


Stabilization of Rock Salt ZnO Nanocrystals by Low-Energy Surfaces and Mg Additions: A First-Principles Study
journal, February 2015

  • Koster, Rik S.; Fang, Changming M.; Dijkstra, Marjolein
  • The Journal of Physical Chemistry C, Vol. 119, Issue 10
  • DOI: 10.1021/jp511503b

Tailoring the Morphology of LiCoO 2 : A First Principles Study
journal, August 2009

  • Kramer, Denis; Ceder, Gerbrand
  • Chemistry of Materials, Vol. 21, Issue 16
  • DOI: 10.1021/cm9008943

Surface Structure, Morphology, and Stability of Li(Ni 1/3 Mn 1/3 Co 1/3 )O 2 Cathode Material
journal, April 2017

  • Garcia, Juan C.; Bareño, Javier; Yan, Jianhua
  • The Journal of Physical Chemistry C, Vol. 121, Issue 15
  • DOI: 10.1021/acs.jpcc.7b00896

Surface changes on LiNi0.8Co0.2O2 particles during testing of high-power lithium-ion cells
journal, August 2002


Improvement of Electrochemical Performances of Li[Ni[sub 0.8]Co[sub 0.1]Mn[sub 0.1]]O[sub 2] Cathode Materials by Fluorine Substitution
journal, January 2007

  • Woo, S. -U.; Park, B. -C.; Yoon, C. S.
  • Journal of The Electrochemical Society, Vol. 154, Issue 7
  • DOI: 10.1149/1.2735916

A Biodegradable Polydopamine-Derived Electrode Material for High-Capacity and Long-Life Lithium-Ion and Sodium-Ion Batteries
journal, August 2016

  • Sun, Tao; Li, Zong-jun; Wang, Heng-guo
  • Angewandte Chemie International Edition, Vol. 55, Issue 36
  • DOI: 10.1002/anie.201604519

Works referencing / citing this record:

Surface/Interface Structure Degradation of Ni‐Rich Layered Oxide Cathodes toward Lithium‐Ion Batteries: Fundamental Mechanisms and Remedying Strategies
journal, December 2019

  • Liang, Longwei; Zhang, Wenheng; Zhao, Fei
  • Advanced Materials Interfaces, Vol. 7, Issue 3
  • DOI: 10.1002/admi.201901749

Ethylene Carbonate‐Free Electrolytes for High‐Nickel Layered Oxide Cathodes in Lithium‐Ion Batteries
journal, June 2019

  • Li, Wangda; Dolocan, Andrei; Li, Jianyu
  • Advanced Energy Materials, Vol. 9, Issue 29
  • DOI: 10.1002/aenm.201901152

Li[Ni 0.9 Co 0.09 W 0.01 ]O 2 : A New Type of Layered Oxide Cathode with High Cycling Stability
journal, October 2019

  • Ryu, Hoon‐Hee; Park, Kang‐Joon; Yoon, Dae Ro
  • Advanced Energy Materials, Vol. 9, Issue 44
  • DOI: 10.1002/aenm.201902698

Hin und zurück – die Entwicklung von LiNiO 2 als Kathodenaktivmaterial
journal, May 2019

  • Bianchini, Matteo; Roca‐Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie, Vol. 131, Issue 31
  • DOI: 10.1002/ange.201812472

A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic‐Sulfide‐Containing Potassium‐Ion Batteries
journal, September 2019


There and Back Again-The Journey of LiNiO 2 as a Cathode Active Material
journal, May 2019

  • Bianchini, Matteo; Roca-Ayats, Maria; Hartmann, Pascal
  • Angewandte Chemie International Edition, Vol. 58, Issue 31
  • DOI: 10.1002/anie.201812472

A Robust Solid Electrolyte Interphase Layer Augments the Ion Storage Capacity of Bimetallic‐Sulfide‐Containing Potassium‐Ion Batteries
journal, October 2019

  • Xie, Junpeng; Li, Xiaodan; Lai, Haojie
  • Angewandte Chemie International Edition, Vol. 58, Issue 41
  • DOI: 10.1002/anie.201908542

Enhanced Electrochemical Performance of Ni‐Rich Layered Cathode Materials by using LiPF 6 as a Cathode Additive
journal, January 2019


Lattice doping regulated interfacial reactions in cathode for enhanced cycling stability
journal, August 2019


High-nickel layered oxide cathodes for lithium-based automotive batteries
journal, January 2020


Structure and primary particle double-tuning by trace nano-TiO 2 for a high-performance LiNiO 2 cathode material
journal, January 2019

  • Deng, Shiyi; Li, Yunjiao; Dai, Qiongyu
  • Sustainable Energy & Fuels, Vol. 3, Issue 11
  • DOI: 10.1039/c9se00487d

Structure- and porosity-tunable, thermally reactive metal organic frameworks for high-performance Ni-rich layered oxide cathode materials with multi-scale pores
journal, January 2019

  • Park, Jun-Ho; Park, Kwangjin; Han, Dongwook
  • Journal of Materials Chemistry A, Vol. 7, Issue 25
  • DOI: 10.1039/c9ta02462j

Suppressing detrimental phase transitions via tungsten doping of LiNiO 2 cathode for next-generation lithium-ion batteries
journal, January 2019

  • Ryu, Hoon-Hee; Park, Geon-Tae; Yoon, Chong S.
  • Journal of Materials Chemistry A, Vol. 7, Issue 31
  • DOI: 10.1039/c9ta06402h

An in situ structural study on the synthesis and decomposition of LiNiO 2
journal, January 2020

  • Bianchini, Matteo; Fauth, François; Hartmann, Pascal
  • Journal of Materials Chemistry A, Vol. 8, Issue 4
  • DOI: 10.1039/c9ta12073d

Elemental Sulfur as a Cathode Additive for Enhanced Rate Capability of Layered Lithium Transition Metal Oxides
journal, January 2019

  • Zhang, Sheng S.; Chen, Ji; Wang, Chunsheng
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.0101904jes

New Insights Related to Rechargeable Lithium Batteries: Li Metal Anodes, Ni Rich LiNi x Co y Mn z O 2 Cathodes and Beyond Them
journal, January 2019

  • Markevich, Elena; Salitra, Gregory; Hartmann, Pascal
  • Journal of The Electrochemical Society, Vol. 166, Issue 3
  • DOI: 10.1149/2.0261903jes

Synthesis of Single Crystal LiNi 0.88 Co 0.09 Al 0.03 O 2  with a Two-Step Lithiation Method
journal, January 2019

  • Li, Hongyang; Li, Jing; Zaker, Nafiseh
  • Journal of The Electrochemical Society, Vol. 166, Issue 10
  • DOI: 10.1149/2.0681910jes

Is Cobalt Needed in Ni-Rich Positive Electrode Materials for Lithium Ion Batteries?
journal, January 2019

  • Li, Hongyang; Cormier, Marc; Zhang, Ning
  • Journal of The Electrochemical Society, Vol. 166, Issue 4
  • DOI: 10.1149/2.1381902jes

Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries
journal, January 2020

  • Teichert, Philipp; Eshetu, Gebrekidan Gebresilassie; Jahnke, Hannes
  • Batteries, Vol. 6, Issue 1
  • DOI: 10.3390/batteries6010008

Degradation and Aging Routes of Ni-Rich Cathode Based Li-Ion Batteries
text, January 2020

  • Teichert, Philipp; Eshetu, Gebrekidan Gebresilassie; Jahnke, Hannes
  • RWTH Aachen University
  • DOI: 10.18154/rwth-2020-04543

New Synthetic Route for the Growth of α-FeOOH/NH2-Mil-101 Films on Copper Foil for High Surface Area Electrodes
journal, November 2019