skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period

Abstract

Studying manganite superlattices [(LCMO)2n/(PCMO)n]t made of La0.625Ca0.375MnO3 (LCMO) and Pr0.625Ca0.375MnO3 (PCMO), we found an unexpected behavior varying the period n. At small n, the ensemble is a three-dimensional ferromagnetic metal due to interfacial charge transfer. At large n, the LCMO layers dominate transport. However, rather than a smooth interpolation between these limits a sharp transport and magnetic anomaly is found at an intermediate critical PCMO thickness n*. Magnetic force microscopy reveals that the phase-separation length scale also maximizes at n* where, unexpectedly, it becomes comparable to that of the (La1–yPry)0.625Ca0.375MnO3 (LPCMO) alloy. We conjecture the phenomenon originates in a disorder-related length scale: Large charge-ordered clusters as in LPCMO can only nucleate when Pr-rich regions reach a critical size related to n*.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1]; ORCiD logo [2];  [3];  [4];  [1];  [5];  [1];  [1];  [1];  [1]; ORCiD logo [1];  [1];  [1]; ORCiD logo [6];  [5];  [3] more »;  [4];  [2];  [7];  [8]; ORCiD logo [8] « less
  1. Fudan Univ., Shanghai (China)
  2. Brookhaven National Lab. (BNL), Upton, NY (United States)
  3. Chinese Academy of Sciences (CAS), Ningbo (China)
  4. Southeast Univ., Nanjing (China)
  5. Nanjing Univ. (China)
  6. Univ. of Nebraska, Lincoln, NE (United States)
  7. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  8. Fudan Univ., Shanghai (China); Nanjing Univ. (China)
Publication Date:
Research Org.:
Brookhaven National Lab. (BNL), Upton, NY (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Key Research Program of China; National Basic Research Program of China; National Natural Science Foundation of China (NSFC); Shanghai Municipal Natural Science Foundation; USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1756297
Alternate Identifier(s):
OSTI ID: 1822086
Report Number(s):
BNL-220775-2021-JAAM
Journal ID: ISSN 2469-9950
Grant/Contract Number:  
SC0012704; 2016YFA0300702; 2014CB921104; 11504053; 11904052; 18XD1400600; 17ZR1442600; 18JC141140; 18ZR1403200; AC05-00OR22725
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review B
Additional Journal Information:
Journal Volume: 102; Journal Issue: 23; Journal ID: ISSN 2469-9950
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; electrical conductivity; magnetic phase transitions; magnetic multilayers; strongly correlated systems; magnetic force microscopy

Citation Formats

Zhu, Yinyan, Ye, Biying, Li, Qiang, Liu, Hao, Miao, Tian, Wu, Lijun, Li, Lei, Lin, Lingfang, Zhu, Yi, Zhang, Zhe, Shi, Qian, Yang, Yulong, Du, Kai, Bai, Yu, Yu, Yang, Guo, Hangwen, Wang, Wenbin, Xu, Xiaoshan, Wu, Xiaoshan, Zhong, Zhicheng, Dong, Shuai, Zhu, Yimei, Dagotto, Elbio, Yin, Lifeng, and Shen, Jian. Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period. United States: N. p., 2020. Web. https://doi.org/10.1103/physrevb.102.235107.
Zhu, Yinyan, Ye, Biying, Li, Qiang, Liu, Hao, Miao, Tian, Wu, Lijun, Li, Lei, Lin, Lingfang, Zhu, Yi, Zhang, Zhe, Shi, Qian, Yang, Yulong, Du, Kai, Bai, Yu, Yu, Yang, Guo, Hangwen, Wang, Wenbin, Xu, Xiaoshan, Wu, Xiaoshan, Zhong, Zhicheng, Dong, Shuai, Zhu, Yimei, Dagotto, Elbio, Yin, Lifeng, & Shen, Jian. Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period. United States. https://doi.org/10.1103/physrevb.102.235107
Zhu, Yinyan, Ye, Biying, Li, Qiang, Liu, Hao, Miao, Tian, Wu, Lijun, Li, Lei, Lin, Lingfang, Zhu, Yi, Zhang, Zhe, Shi, Qian, Yang, Yulong, Du, Kai, Bai, Yu, Yu, Yang, Guo, Hangwen, Wang, Wenbin, Xu, Xiaoshan, Wu, Xiaoshan, Zhong, Zhicheng, Dong, Shuai, Zhu, Yimei, Dagotto, Elbio, Yin, Lifeng, and Shen, Jian. Wed . "Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period". United States. https://doi.org/10.1103/physrevb.102.235107. https://www.osti.gov/servlets/purl/1756297.
@article{osti_1756297,
title = {Nonmonotonic crossover in electronic phase separated manganite superlattices driven by the superlattice period},
author = {Zhu, Yinyan and Ye, Biying and Li, Qiang and Liu, Hao and Miao, Tian and Wu, Lijun and Li, Lei and Lin, Lingfang and Zhu, Yi and Zhang, Zhe and Shi, Qian and Yang, Yulong and Du, Kai and Bai, Yu and Yu, Yang and Guo, Hangwen and Wang, Wenbin and Xu, Xiaoshan and Wu, Xiaoshan and Zhong, Zhicheng and Dong, Shuai and Zhu, Yimei and Dagotto, Elbio and Yin, Lifeng and Shen, Jian},
abstractNote = {Studying manganite superlattices [(LCMO)2n/(PCMO)n]t made of La0.625Ca0.375MnO3 (LCMO) and Pr0.625Ca0.375MnO3 (PCMO), we found an unexpected behavior varying the period n. At small n, the ensemble is a three-dimensional ferromagnetic metal due to interfacial charge transfer. At large n, the LCMO layers dominate transport. However, rather than a smooth interpolation between these limits a sharp transport and magnetic anomaly is found at an intermediate critical PCMO thickness n*. Magnetic force microscopy reveals that the phase-separation length scale also maximizes at n* where, unexpectedly, it becomes comparable to that of the (La1–yPry)0.625Ca0.375MnO3 (LPCMO) alloy. We conjecture the phenomenon originates in a disorder-related length scale: Large charge-ordered clusters as in LPCMO can only nucleate when Pr-rich regions reach a critical size related to n*.},
doi = {10.1103/physrevb.102.235107},
journal = {Physical Review B},
number = 23,
volume = 102,
place = {United States},
year = {2020},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Magnetically Tunable Metal-Insulator Superlattices
journal, January 2010

  • Nakamura, Masao; Okuyama, Daisuke; Lee, Jong Seok
  • Advanced Materials, Vol. 22, Issue 4
  • DOI: 10.1002/adma.200902734

Tunable ferroelectricity in artificial tri-layer superlattices comprised of non-ferroic components
journal, January 2012

  • Rogdakis, K.; Seo, J. W.; Viskadourakis, Z.
  • Nature Communications, Vol. 3, Issue 1
  • DOI: 10.1038/ncomms2061

Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices
journal, July 2014

  • Zhai, Xiaofang; Cheng, Long; Liu, Yang
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5283

Effect of A -site cation ordering on the magnetoelectric properties in [ ( LaMnO 3 ) m / ( SrMnO 3 ) m ] n artificial superlattices
journal, October 2002


Tuning Perpendicular Magnetic Anisotropy by Oxygen Octahedral Rotations in ( La 1 x Sr x MnO 3 ) / ( SrIrO 3 ) Superlattices
journal, August 2017


Electric control of the magnetization in BiFeO 3 /LaFeO 3 superlattices
journal, August 2013


Enhanced ordering temperatures in antiferromagnetic manganite superlattices
journal, October 2009

  • May, S. J.; Ryan, P. J.; Robertson, J. L.
  • Nature Materials, Vol. 8, Issue 11
  • DOI: 10.1038/nmat2557

Direct experimental evidence of physical origin of electronic phase separation in manganites
journal, March 2020

  • Miao, Tian; Deng, Lina; Yang, Wenting
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 13
  • DOI: 10.1073/pnas.1920502117

Atomic-scale control of magnetic anisotropy via novel spin–orbit coupling effect in La 2/3 Sr 1/3 MnO 3 /SrIrO 3 superlattices
journal, May 2016

  • Yi, Di; Liu, Jian; Hsu, Shang-Lin
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 23
  • DOI: 10.1073/pnas.1524689113

Exchange bias in LaNiO3–LaMnO3 superlattices
journal, January 2012

  • Gibert, Marta; Zubko, Pavlo; Scherwitzl, Raoul
  • Nature Materials, Vol. 11, Issue 3
  • DOI: 10.1038/nmat3224

Tailoring Magnetic Interlayer Coupling in La 0.7 Sr 0.3 MnO 3 / SrRuO 3 Superlattices
journal, April 2010


Interfacial Structure of Manganite Superlattice
journal, July 2011

  • Yamasaki, Yoshihiro; Okuyama, Daisuke; Nakamura, Masao
  • Journal of the Physical Society of Japan, Vol. 80, Issue 7
  • DOI: 10.1143/JPSJ.80.073601

Chemical ordering suppresses large-scale electronic phase separation in doped manganites
journal, April 2016

  • Zhu, Yinyan; Du, Kai; Niu, Jiebin
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms11260

Electronic phase separation at the LaAlO3/SrTiO3 interface
journal, February 2011

  • Ariando, ; Wang, X.; Baskaran, G.
  • Nature Communications, Vol. 2, Issue 1
  • DOI: 10.1038/ncomms1192

A large enhancement of magnetocaloric effect by chemical ordering in manganites
journal, January 2018

  • Wang, Yanmei; Zhu, Yinyan; Liu, Hao
  • Journal of Materials Chemistry C, Vol. 6, Issue 5
  • DOI: 10.1039/C7TC05369J

Complexity in Strongly Correlated Electronic Systems
journal, July 2005


Emergent phenomena in manganites under spatial confinement
journal, January 2013


Low Temperature Magnetoresistance and the Magnetic Phase Diagram of La 1 x Ca x MnO 3
journal, October 1995


Colossal magnetoresistant materials: the key role of phase separation
journal, April 2001


Magnetic-field-induced metal-insulator phenomena in Pr 1 x Ca x Mn O 3 with controlled charge-ordering instability
journal, January 1996


Colossal magnetoresistive manganites
journal, October 1999


Percolative phase separation underlies colossal magnetoresistance in mixed-valent manganites
journal, June 1999

  • Uehara, M.; Mori, S.; Chen, C. H.
  • Nature, Vol. 399, Issue 6736
  • DOI: 10.1038/21142

Direct Observation of Percolation in a Manganite Thin Film
journal, September 2002


Critical fluctuations upon photoinduced phase transition in manganite strips
journal, May 2018

  • Lin, HanXuan; Miao, Tian; Shi, Qian
  • Science China Physics, Mechanics & Astronomy, Vol. 61, Issue 9
  • DOI: 10.1007/s11433-018-9231-4

Spatial confinement tuning of quenched disorder effects and enhanced magnetoresistance in manganite nanowires
journal, October 2019

  • Yu, Yang; Li, Qiang; Shi, Qian
  • Science China Physics, Mechanics & Astronomy, Vol. 63, Issue 3
  • DOI: 10.1007/s11433-019-1444-6

Relaxation between charge order and ferromagnetism in manganites: Indication of structural phase separation
journal, December 2000


Visualization of Localized Holes in Manganite Thin Films with Atomic Resolution
journal, December 2005


Work function of the mixed-valent manganese perovskites
journal, June 2004

  • Reagor, D. W.; Lee, S. Y.; Li, Y.
  • Journal of Applied Physics, Vol. 95, Issue 12
  • DOI: 10.1063/1.1737802

Artificial charge-modulationin atomic-scale perovskite titanate superlattices
journal, September 2002

  • Ohtomo, A.; Muller, D. A.; Grazul, J. L.
  • Nature, Vol. 419, Issue 6905
  • DOI: 10.1038/nature00977

Direct Imaging of Nanoscale Phase Separation in La 0.55 Ca 0.45 MnO 3 : Relationship to Colossal Magnetoresistance
journal, August 2009


Nanoscale Multiphase Separation at La 2 / 3 Ca 1 / 3 MnO 3 / SrTiO 3 Interfaces
journal, July 2001


Giant Cluster Coexistence in Doped Manganites and Other Compounds
journal, June 2000


Dielectrophoresis model for the colossal electroresistance of phase-separated manganites
journal, October 2007


Microscopic simulation of the percolation of manganites
journal, January 2005

  • Dong, Shuai; Zhu, Han; Wu, X.
  • Applied Physics Letters, Vol. 86, Issue 2
  • DOI: 10.1063/1.1848184

Electrophoretic-like Gating Used To Control Metal–Insulator Transitions in Electronically Phase Separated Manganite Wires
journal, July 2013

  • Guo, Hangwen; Noh, Joo H.; Dong, Shuai
  • Nano Letters, Vol. 13, Issue 8
  • DOI: 10.1021/nl4016842

Colossal Effects in Transition Metal Oxides Caused by Intrinsic Inhomogeneities
journal, December 2001