skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 28, 2021

Title: High-volume and -adiabat capsule (“HVAC”) ignition: Lowered fuel compression requirements using advanced Hohlraums

Authors:
ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [1];  [1]
  1. Lawrence Livermore National Laboratory, Livermore, California 94550, USA
Publication Date:
Sponsoring Org.:
USDOE
OSTI Identifier:
1749960
Grant/Contract Number:  
AC52-07NA27344
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Name: Physics of Plasmas Journal Volume: 27 Journal Issue: 12; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics
Country of Publication:
United States
Language:
English

Citation Formats

Amendt, Peter, Ho, Darwin, Nora, Ryan, Ping, Yuan, and Smalyuk, Vladimir. High-volume and -adiabat capsule (“HVAC”) ignition: Lowered fuel compression requirements using advanced Hohlraums. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0032380.
Amendt, Peter, Ho, Darwin, Nora, Ryan, Ping, Yuan, & Smalyuk, Vladimir. High-volume and -adiabat capsule (“HVAC”) ignition: Lowered fuel compression requirements using advanced Hohlraums. United States. https://doi.org/10.1063/5.0032380
Amendt, Peter, Ho, Darwin, Nora, Ryan, Ping, Yuan, and Smalyuk, Vladimir. Tue . "High-volume and -adiabat capsule (“HVAC”) ignition: Lowered fuel compression requirements using advanced Hohlraums". United States. https://doi.org/10.1063/5.0032380.
@article{osti_1749960,
title = {High-volume and -adiabat capsule (“HVAC”) ignition: Lowered fuel compression requirements using advanced Hohlraums},
author = {Amendt, Peter and Ho, Darwin and Nora, Ryan and Ping, Yuan and Smalyuk, Vladimir},
abstractNote = {},
doi = {10.1063/5.0032380},
journal = {Physics of Plasmas},
number = 12,
volume = 27,
place = {United States},
year = {2020},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 28, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Prolate-Spheroid (“Rugby-Shaped”) Hohlraum for Inertial Confinement Fusion
journal, August 2007


Pushered single shell implosions for mix and radiation trapping studies using high-Z layers on National Ignition Facility
journal, July 2019

  • Dewald, E. L.; Pino, J. E.; Tipton, R. E.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5109426

The high velocity, high adiabat, “Bigfoot” campaign and tests of indirect-drive implosion scaling
journal, May 2018

  • Casey, D. T.; Thomas, C. A.; Baker, K. L.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5019741

Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

Turbulent mixing and transition criteria of flows induced by hydrodynamic instabilities
journal, August 2019

  • Zhou, Ye; Clark, Timothy T.; Clark, Daniel S.
  • Physics of Plasmas, Vol. 26, Issue 8
  • DOI: 10.1063/1.5088745

Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


The high-foot implosion campaign on the National Ignition Facility
journal, May 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4874330

Diagnosing inertial confinement fusion gamma ray physics (invited)
journal, October 2010

  • Herrmann, H. W.; Hoffman, N.; Wilson, D. C.
  • Review of Scientific Instruments, Vol. 81, Issue 10
  • DOI: 10.1063/1.3495770

Hot-spot dynamics and deceleration-phase Rayleigh–Taylor instability of imploding inertial confinement fusion capsules
journal, December 2001

  • Betti, R.; Umansky, M.; Lobatchev, V.
  • Physics of Plasmas, Vol. 8, Issue 12
  • DOI: 10.1063/1.1412006

A new symmetry model for hohlraum-driven capsule implosion experiments on the NIF
journal, March 2016


The Physics of Inertial Fusion
book, January 2004


A near one-dimensional indirectly driven implosion at convergence ratio 30
journal, May 2018

  • MacLaren, S. A.; Masse, L. P.; Czajka, C. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5017976

Hohlraum-Driven High-Convergence Implosion Experiments with Multiple Beam Cones on the Omega Laser Facility
journal, September 2002


Advances in NLTE modeling for integrated simulations
journal, January 2010


Symmetry tuning and high energy coupling for an Al capsule in a Au rugby hohlraum on NIF
journal, October 2020

  • Ping, Y.; Smalyuk, V. A.; Amendt, P.
  • Physics of Plasmas, Vol. 27, Issue 10
  • DOI: 10.1063/5.0021183

Implosion configurations for robust ignition using high- density carbon (diamond) ablator for indirect-drive ICF at the National Ignition Facility
journal, May 2016


Shock-induced mix across an ideal interface
journal, April 2017

  • Bellei, C.; Amendt, P. A.
  • Physics of Plasmas, Vol. 24, Issue 4
  • DOI: 10.1063/1.4979904

2D X-Ray Radiography of Imploding Capsules at the National Ignition Facility
journal, May 2014


Diagnostic signature of the compressibility of the inertial-confinement-fusion pusher
journal, February 2020


Integrated modeling of cryogenic layered highfoot experiments at the NIF
journal, May 2016

  • Kritcher, A. L.; Hinkel, D. E.; Callahan, D. A.
  • Physics of Plasmas, Vol. 23, Issue 5
  • DOI: 10.1063/1.4949351

Indirect-drive noncryogenic double-shell ignition targets for the National Ignition Facility: Design and analysis
journal, May 2002

  • Amendt, Peter; Colvin, J. D.; Tipton, R. E.
  • Physics of Plasmas, Vol. 9, Issue 5
  • DOI: 10.1063/1.1459451

Spanwise homogeneous buoyancy-drag model for Rayleigh–Taylor mixing and experimental evaluation
journal, June 2000


Design considerations for indirectly driven double shell capsules
journal, September 2018

  • Montgomery, D. S.; Daughton, W. S.; Albright, B. J.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5042478

The potential of imposed magnetic fields for enhancing ignition probability and fusion energy yield in indirect-drive inertial confinement fusion
journal, June 2017

  • Perkins, L. J.; Ho, D. D. -M; Logan, B. G.
  • Physics of Plasmas, Vol. 24, Issue 6
  • DOI: 10.1063/1.4985150

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

The role of a detailed configuration accounting (DCA) atomic physics package in explaining the energy balance in ignition-scale hohlraums
journal, September 2011


High-Performance Indirect-Drive Cryogenic Implosions at High Adiabat on the National Ignition Facility
journal, September 2018


Transient magnetic field diffusion considerations relevant to magnetically assisted indirect drive inertial confinement fusion
journal, November 2020

  • Moody, J. D.; Johnson, A.; Javedani, J.
  • Physics of Plasmas, Vol. 27, Issue 11
  • DOI: 10.1063/5.0022722

Aluminum X-ray mass-ablation rate measurements
journal, January 2017


Comments on the article A generalized scaling law for the ignition energy of inertial confinement fusion capsules
journal, April 2001


Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions
journal, May 2019

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5091449

High-Gain Magnetized Inertial Fusion
journal, January 2012


Three‐dimensional simulations of Nova high growth factor capsule implosion experiments
journal, May 1996

  • Marinak, M. M.; Tipton, R. E.; Landen, O. L.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.872004

The National Ignition Facility Diagnostic Set at the Completion of the National Ignition Campaign, September 2012
journal, February 2016

  • Kilkenny, J. D.; Bell, P. M.; Bradley, D. K.
  • Fusion Science and Technology, Vol. 69, Issue 1
  • DOI: 10.13182/FST15-173

Toward a burning plasma state using diamond ablator inertially confined fusion (ICF) implosions on the National Ignition Facility (NIF)
journal, November 2018

  • Hopkins, L. Berzak; LePape, S.; Divol, L.
  • Plasma Physics and Controlled Fusion, Vol. 61, Issue 1
  • DOI: 10.1088/1361-6587/aad97e

Recent advances in the turbulent Rayleigh–Taylor instability
journal, May 2005

  • Dimonte, Guy; Ramaprabhu, P.; Youngs, D. L.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1871952

Measurement of areal density in the ablators of inertial-confinement-fusion capsules via detection of ablator (n, n′γ) gamma-ray emission
journal, April 2013

  • Hoffman, N. M.; Herrmann, H. W.; Kim, Y. H.
  • Physics of Plasmas, Vol. 20, Issue 4
  • DOI: 10.1063/1.4799799

Buoyancy-drag mix model obtained by multifluid interpenetration equations
journal, October 2005


Enhanced energy coupling for indirectly driven inertial confinement fusion
journal, October 2018


Assessing the prospects for achieving double-shell ignition on the National Ignition Facility using vacuum hohlraums
journal, May 2007

  • Amendt, Peter; Cerjan, C.; Hamza, A.
  • Physics of Plasmas, Vol. 14, Issue 5
  • DOI: 10.1063/1.2716406