skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites

Abstract

Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising tone chorus elements propagating from a near equatorial (Van Allen Probes) to an off-equatorial (Arase) satellite. The chorus is observed first on the more equatorial satellite and is found to be more oblique and significantly attenuated at the off-equatorial satellite. Further, this is consistent with the prevailing theory of chorus propagation and with the idea that chorus must propagate from the equatorial source region to higher latitudes. Ray tracing of chorus at the observed frequencies confirms that these elements could be generated parallel to the field at the equator, and propagate through the medium unducted to Van Allen Probes A and then to Arase with the observed time delay, and have the observed obliquity and intensity at each satellite.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [5]; ORCiD logo [4];  [6];  [6]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [6];  [9]
  1. Univ. of Minnesota Twin Cities, Minneapolis, MN (United States)
  2. Nagoya Univ. (Japan)
  3. Kanazawa Univ. (Japan)
  4. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  5. Univ. of Iowa, Iowa City, IA (United States)
  6. ISAS/JAXA, Sagamihara (Japan)
  7. Tohoku Univ., Sendai (Japan)
  8. CEA, DAM, DIF, Arpajon (France); UPS, CEA LMCE, Bruyères‐le‐Châtel (France)
  9. ISAS, JAXA Kyoto University Kyoto Japan
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE National Nuclear Security Administration (NNSA); National Aeronautics and Space Administration (NASA); JSPS KAKENHI
OSTI Identifier:
1740001
Alternate Identifier(s):
OSTI ID: 1786715
Report Number(s):
LA-UR-20-24874
Journal ID: ISSN 2169-9380
Grant/Contract Number:  
89233218CNA000001; 922613; 80NSSC19K0842; NAS5-01072; 20200073DR; 5H05815; 15H05747; 16H06286; 20H01959; 20K14546
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Geophysical Research. Space Physics
Additional Journal Information:
Journal Volume: 125; Journal Issue: 10; Journal ID: ISSN 2169-9380
Publisher:
American Geophysical Union
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; Chorus; Wave; Propagation; Simultaneous observations; Radiation belt

Citation Formats

Colpitts, Chris, Miyoshi, Yoshizumi, Kasahara, Yoshiya, Delzanno, Gian Luca, Wygant, John R., Cattell, Cynthia A., Breneman, Aaron, Kletzing, Craig, Cunningham, Greg, Hikishima, Mitsuru, Matsuda, Shoya, Katoh, Yuto, Ripoll, Jean‐Francois, Shinohara, Iku, and Matsuoka, Ayako. First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites. United States: N. p., 2020. Web. https://doi.org/10.1029/2020ja028315.
Colpitts, Chris, Miyoshi, Yoshizumi, Kasahara, Yoshiya, Delzanno, Gian Luca, Wygant, John R., Cattell, Cynthia A., Breneman, Aaron, Kletzing, Craig, Cunningham, Greg, Hikishima, Mitsuru, Matsuda, Shoya, Katoh, Yuto, Ripoll, Jean‐Francois, Shinohara, Iku, & Matsuoka, Ayako. First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites. United States. https://doi.org/10.1029/2020ja028315
Colpitts, Chris, Miyoshi, Yoshizumi, Kasahara, Yoshiya, Delzanno, Gian Luca, Wygant, John R., Cattell, Cynthia A., Breneman, Aaron, Kletzing, Craig, Cunningham, Greg, Hikishima, Mitsuru, Matsuda, Shoya, Katoh, Yuto, Ripoll, Jean‐Francois, Shinohara, Iku, and Matsuoka, Ayako. Fri . "First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites". United States. https://doi.org/10.1029/2020ja028315. https://www.osti.gov/servlets/purl/1740001.
@article{osti_1740001,
title = {First Direct Observations of Propagation of Discrete Chorus Elements From the Equatorial Source to Higher Latitudes, Using the Van Allen Probes and Arase Satellites},
author = {Colpitts, Chris and Miyoshi, Yoshizumi and Kasahara, Yoshiya and Delzanno, Gian Luca and Wygant, John R. and Cattell, Cynthia A. and Breneman, Aaron and Kletzing, Craig and Cunningham, Greg and Hikishima, Mitsuru and Matsuda, Shoya and Katoh, Yuto and Ripoll, Jean‐Francois and Shinohara, Iku and Matsuoka, Ayako},
abstractNote = {Whistler mode chorus waves have recently been established as the most likely candidate for scattering relativistic electrons to produce the electron microbursts observed by low altitude satellites and balloons. These waves would have to propagate from the equatorial source region to significantly higher magnetic latitude in order to scatter electrons of these relativistic energies. This theoretically proposed propagation has never been directly observed. We present the first direct observations of the same discrete rising tone chorus elements propagating from a near equatorial (Van Allen Probes) to an off-equatorial (Arase) satellite. The chorus is observed first on the more equatorial satellite and is found to be more oblique and significantly attenuated at the off-equatorial satellite. Further, this is consistent with the prevailing theory of chorus propagation and with the idea that chorus must propagate from the equatorial source region to higher latitudes. Ray tracing of chorus at the observed frequencies confirms that these elements could be generated parallel to the field at the equator, and propagate through the medium unducted to Van Allen Probes A and then to Arase with the observed time delay, and have the observed obliquity and intensity at each satellite.},
doi = {10.1029/2020ja028315},
journal = {Journal of Geophysical Research. Space Physics},
number = 10,
volume = 125,
place = {United States},
year = {2020},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Observations of relativistic electron microbursts in association with VLF chorus
journal, April 2001

  • Lorentzen, K. R.; Blake, J. B.; Inan, U. S.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A4
  • DOI: 10.1029/2000JA003018

Electron precipitation associated with discrete very-low-frequency emissions
journal, December 1971

  • Rosenberg, T. J.; Helliwell, R. A.; Katsufrakis, J. P.
  • Journal of Geophysical Research, Vol. 76, Issue 34
  • DOI: 10.1029/JA076i034p08445

Variation in Plasmaspheric Hiss Wave Power With Plasma Density
journal, September 2018

  • Malaspina, David M.; Ripoll, Jean-Francois; Chu, Xiangning
  • Geophysical Research Letters, Vol. 45, Issue 18
  • DOI: 10.1029/2018GL078564

Use of the three-dimensional covariance matrix in analyzing the polarization properties of plane waves
journal, October 1972


Global statistical evidence for chorus as the embryonic source of plasmaspheric hiss: SOURCE OF PLASMASPHERIC HISS
journal, June 2013

  • Meredith, Nigel P.; Horne, Richard B.; Bortnik, Jacob
  • Geophysical Research Letters, Vol. 40, Issue 12
  • DOI: 10.1002/grl.50593

Quasi-linear diffusion coefficients for highly oblique whistler mode waves: DIFFUSION COEFFICIENTS FOR OBLIQUE WAVES
journal, May 2017

  • Albert, J. M.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 5
  • DOI: 10.1002/2017JA024124

Propagation of whistler mode chorus to low altitudes: Spacecraft observations of structured ELF hiss
journal, January 2006

  • Santolík, O.; Chum, J.; Parrot, M.
  • Journal of Geophysical Research, Vol. 111, Issue A10
  • DOI: 10.1029/2005JA011462

Discovery of very large amplitude whistler-mode waves in Earth's radiation belts
journal, January 2008

  • Cattell, C.; Wygant, J. R.; Goetz, K.
  • Geophysical Research Letters, Vol. 35, Issue 1
  • DOI: 10.1029/2007GL032009

The Electric and Magnetic Field Instrument Suite and Integrated Science (EMFISIS) on RBSP
journal, June 2013


Observations Directly Linking Relativistic Electron Microbursts to Whistler Mode Chorus: Van Allen Probes and FIREBIRD II
journal, November 2017

  • Breneman, A. W.; Crew, A.; Sample, J.
  • Geophysical Research Letters, Vol. 44, Issue 22
  • DOI: 10.1002/2017GL075001

Statistical Occurrence and Distribution of High‐Amplitude Whistler Mode Waves in the Outer Radiation Belt
journal, March 2019

  • Tyler, E.; Breneman, A.; Cattell, C.
  • Geophysical Research Letters, Vol. 46, Issue 5
  • DOI: 10.1029/2019GL082292

Relation between fine structure of energy spectra for pulsating aurora electrons and frequency spectra of whistler mode chorus waves
journal, September 2015

  • Miyoshi, Y.; Saito, S.; Seki, K.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 9
  • DOI: 10.1002/2015JA021562

Quantification of relativistic electron microburst losses during the GEM storms
journal, January 2004


Focusing on Size and Energy Dependence of Electron Microbursts From the Van Allen Radiation Belts
journal, November 2012

  • Spence, H. E.; Blake, J. B.; Crew, A. B.
  • Space Weather, Vol. 10, Issue 11
  • DOI: 10.1029/2012SW000869

Particle Dynamics in the Earth's Radiation Belts: Review of Current Research and Open Questions
journal, May 2020

  • Ripoll, J. ‐F.; Claudepierre, S. G.; Ukhorskiy, A. Y.
  • Journal of Geophysical Research: Space Physics, Vol. 125, Issue 5
  • DOI: 10.1029/2019JA026735

Pulsating aurora from electron scattering by chorus waves
journal, February 2018


Explaining sudden losses of outer radiation belt electrons during geomagnetic storms
journal, January 2012

  • Turner, Drew L.; Shprits, Yuri; Hartinger, Michael
  • Nature Physics, Vol. 8, Issue 3
  • DOI: 10.1038/nphys2185

Energetic electron precipitation associated with pulsating aurora: EISCAT and Van Allen Probe observations: pulsating aurora
journal, April 2015

  • Miyoshi, Y.; Oyama, S.; Saito, S.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 4
  • DOI: 10.1002/2014JA020690

Balloon observations of X rays in the auroral zone: 3. High time resolution studies
journal, November 1964


Ray tracing of penetrating chorus and its implications for the radiation belts: PENETRATING CHORUS
journal, August 2007

  • Bortnik, J.; Thorne, R. M.; Meredith, N. P.
  • Geophysical Research Letters, Vol. 34, Issue 15
  • DOI: 10.1029/2007GL030040

Characteristics of the Poynting flux and wave normal vectors of whistler-mode waves observed on THEMIS: WHISTLER WAVE PROPAGATION PROPERTIES
journal, April 2013

  • Li, Wen; Bortnik, J.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 4
  • DOI: 10.1002/jgra.50176

Rapid local acceleration of relativistic radiation-belt electrons by magnetospheric chorus
journal, December 2013


Relativistic electron microbursts during the GEM storms
journal, July 2001

  • Lorentzen, K. R.; Looper, M. D.; Blake, J. B.
  • Geophysical Research Letters, Vol. 28, Issue 13
  • DOI: 10.1029/2001GL012926

New high temporal and spatial resolution measurements by SAMPEX of the precipitation of relativistic electrons
journal, January 1996


Survey of Poynting flux of whistler mode chorus in the outer zone: OUTER ZONE CHORUS
journal, July 2010

  • Santolík, O.; Pickett, J. S.; Gurnett, D. A.
  • Journal of Geophysical Research: Space Physics, Vol. 115, Issue A7
  • DOI: 10.1029/2009JA014925

Global distribution of whistler-mode chorus waves observed on the THEMIS spacecraft
journal, January 2009

  • Li, W.; Thorne, R. M.; Angelopoulos, V.
  • Geophysical Research Letters, Vol. 36, Issue 9
  • DOI: 10.1029/2009GL037595

Potential waves for relativistic electron scattering and stochastic acceleration during magnetic storms
journal, August 1998

  • Horne, Richard B.; Thorne, Richard M.
  • Geophysical Research Letters, Vol. 25, Issue 15
  • DOI: 10.1029/98GL01002

Electron Acceleration in the Heart of the Van Allen Radiation Belts
journal, July 2013


The ARASE (ERG) magnetic field investigation
journal, March 2018


The Plasma Wave Experiment (PWE) on board the Arase (ERG) satellite
journal, May 2018

  • Kasahara, Yoshiya; Kasaba, Yasumasa; Kojima, Hirotsugu
  • Earth, Planets and Space, Vol. 70, Issue 1
  • DOI: 10.1186/s40623-018-0842-4

Evidence for chorus-driven electron acceleration to relativistic energies from a survey of geomagnetically disturbed periods
journal, January 2003


Spatial spreading of magnetospherically reflected chorus elements in the inner magnetosphere
journal, January 2013


Morphology of VLF emissions observed with the Injun 3 satellite
journal, September 1968

  • Taylor, William W. L.; Gurnett, Donald A.
  • Journal of Geophysical Research, Vol. 73, Issue 17
  • DOI: 10.1029/JA073i017p05615

Theory and simulation of the generation of whistler-mode chorus: GENERATION PROCESS OF CHORUS EMISSIONS
journal, April 2008

  • Omura, Yoshiharu; Katoh, Yuto; Summers, Danny
  • Journal of Geophysical Research: Space Physics, Vol. 113, Issue A4
  • DOI: 10.1029/2007JA012622

Empirical model of lower band chorus wave distribution in the outer radiation belt: EMPIRICAL MODEL OF CHORUS WAVES
journal, December 2015

  • Agapitov, O. V.; Artemyev, A. V.; Mourenas, D.
  • Journal of Geophysical Research: Space Physics, Vol. 120, Issue 12
  • DOI: 10.1002/2015JA021829

Spatial Extent and Temporal Correlation of Chorus and Hiss: Statistical Results From Multipoint THEMIS Observations
journal, October 2018

  • Agapitov, O.; Mourenas, D.; Artemyev, A.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 10
  • DOI: 10.1029/2018JA025725

Modeling the propagation characteristics of chorus using CRRES suprathermal electron fluxes: PROPAGATION CHARACTERISTICS OF CHORUS
journal, August 2007

  • Bortnik, J.; Thorne, R. M.; Meredith, N. P.
  • Journal of Geophysical Research: Space Physics, Vol. 112, Issue A8
  • DOI: 10.1029/2006JA012237

Chorus whistler wave source scales as determined from multipoint Van Allen Probe measurements: Chorus Whistler Wave Source Scales
journal, March 2017

  • Agapitov, O.; Blum, L. W.; Mozer, F. S.
  • Geophysical Research Letters, Vol. 44, Issue 6
  • DOI: 10.1002/2017GL072701

An empirical plasmasphere and trough density model: CRRES observations
journal, November 2001

  • Sheeley, B. W.; Moldwin, M. B.; Rassoul, H. K.
  • Journal of Geophysical Research: Space Physics, Vol. 106, Issue A11
  • DOI: 10.1029/2000JA000286

Two types of magnetospheric ELF chorus and their substorm dependences
journal, November 1977

  • Tsurutani, Bruce T.; Smith, Edward J.
  • Journal of Geophysical Research, Vol. 82, Issue 32
  • DOI: 10.1029/JA082i032p05112

Statistical Distribution of Whistler Mode Waves in the Radiation Belts With Large Magnetic Field Amplitudes and Comparison to Large Electric Field Amplitudes
journal, August 2019

  • Tyler, E.; Breneman, A.; Cattell, C.
  • Journal of Geophysical Research: Space Physics, Vol. 124, Issue 8
  • DOI: 10.1029/2019JA026913

Effects of Ducting on Whistler Mode Chorus or Exohiss in the Outer Radiation Belt
journal, June 2019

  • Hanzelka, Miroslav; Santolík, Ondřej
  • Geophysical Research Letters, Vol. 46, Issue 11
  • DOI: 10.1029/2019GL083115

New chorus wave properties near the equator from Van Allen Probes wave observations
journal, May 2016

  • Li, W.; Santolik, O.; Bortnik, J.
  • Geophysical Research Letters, Vol. 43, Issue 10
  • DOI: 10.1002/2016GL068780

The ERG Science Center
journal, June 2018

  • Miyoshi, Yoshizumi; Hori, Tomoaki; Shoji, Masafumi
  • Earth, Planets and Space, Vol. 70, Issue 1
  • DOI: 10.1186/s40623-018-0867-8

Singular value decomposition methods for wave propagation analysis: SVD METHODS FOR WAVE PROPAGATION ANALYSIS
journal, February 2003


THEMIS observation of chorus elements without a gap at half the gyrofrequency: CONTINUOUS RISING TONE CHORUS
journal, November 2012

  • Kurita, S.; Katoh, Y.; Omura, Y.
  • Journal of Geophysical Research: Space Physics, Vol. 117, Issue A11
  • DOI: 10.1029/2012JA018076

Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations
journal, January 2003


Identifying the Driver of Pulsating Aurora
journal, September 2010


An Observation Linking the Origin of Plasmaspheric Hiss to Discrete Chorus Emissions
journal, May 2009


Chorus wave-normal statistics in the Earth's radiation belts from ray tracing technique
journal, January 2012


Onboard software of Plasma Wave Experiment aboard Arase: instrument management and signal processing of Waveform Capture/Onboard Frequency Analyzer
journal, May 2018

  • Matsuda, Shoya; Kasahara, Yoshiya; Kojima, Hirotsugu
  • Earth, Planets and Space, Vol. 70, Issue 1
  • DOI: 10.1186/s40623-018-0838-0

A simulation study of the propagation of whistler-mode chorus in the Earth’s inner magnetosphere
journal, April 2014


Conjugacy of electron microbursts and VLF chorus
journal, January 1981

  • Rosenberg, T. J.; Siren, J. C.; Matthews, D. L.
  • Journal of Geophysical Research, Vol. 86, Issue A7
  • DOI: 10.1029/JA086iA07p05819

Chorus source locations from VLF Poynting flux measurements with the Polar spacecraft
journal, November 1998

  • LeDocq, M. J.; Gurnett, D. A.; Hospodarsky, G. B.
  • Geophysical Research Letters, Vol. 25, Issue 21
  • DOI: 10.1029/1998GL900071

Origins of plasmaspheric hiss
journal, January 2006

  • Meredith, Nigel P.; Horne, Richard B.; Clilverd, Mark A.
  • Journal of Geophysical Research, Vol. 111, Issue A9
  • DOI: 10.1029/2006JA011707

The Electric Field and Waves Instruments on the Radiation Belt Storm Probes Mission
journal, October 2013


Ducted propagation of chorus waves: Cluster observations
journal, January 2011


The unexpected origin of plasmaspheric hiss from discrete chorus emissions
journal, March 2008

  • Bortnik, Jacob; Thorne, Richard M.; Meredith, Nigel P.
  • Nature, Vol. 452, Issue 7183
  • DOI: 10.1038/nature06741

Fine structure of large-amplitude chorus wave packets: STRUCTURE OF CHORUS WAVE PACKETS
journal, January 2014

  • Santolík, O.; Kletzing, C. A.; Kurth, W. S.
  • Geophysical Research Letters, Vol. 41, Issue 2
  • DOI: 10.1002/2013GL058889

The FIREBIRD-II CubeSat mission: Focused investigations of relativistic electron burst intensity, range, and dynamics
journal, March 2020

  • Johnson, A. T.; Shumko, M.; Griffith, B.
  • Review of Scientific Instruments, Vol. 91, Issue 3
  • DOI: 10.1063/1.5137905

SAMPEX observations of precipitation bursts in the outer radiation belt
journal, July 2000

  • Nakamura, R.; Isowa, M.; Kamide, Y.
  • Journal of Geophysical Research: Space Physics, Vol. 105, Issue A7
  • DOI: 10.1029/2000JA900018

Banded chorus-A new type of VLF radiation observed in the magnetosphere by OGO 1 and OGO 3
journal, June 1969


Path-integrated growth of electrostatic waves: The generation of terrestrial myriametric radiation
journal, January 1989


Observation of relativistic electron microbursts in conjunction with intense radiation belt whistler-mode waves: WAVE-DRIVEN MICROBURSTS
journal, April 2011

  • Kersten, K.; Cattell, C. A.; Breneman, A.
  • Geophysical Research Letters, Vol. 38, Issue 8
  • DOI: 10.1029/2011GL046810

The distribution of plasmaspheric hiss wave power with respect to plasmapause location: PLASMAPAUSE-SORTED HISS
journal, August 2016

  • Malaspina, David M.; Jaynes, Allison N.; Boulé, Cory
  • Geophysical Research Letters, Vol. 43, Issue 15
  • DOI: 10.1002/2016GL069982

Examining Coherency Scales, Substructure, and Propagation of Whistler Mode Chorus Elements With Magnetospheric Multiscale (MMS): MMS Observations of Chorus Elements
journal, November 2017

  • Turner, D. L.; Lee, J. H.; Claudepierre, S. G.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 11
  • DOI: 10.1002/2017JA024474

Statistics of whistler mode waves in the outer radiation belt: Cluster STAFF-SA measurements: WHISTLER WAVES STATISTICS
journal, June 2013

  • Agapitov, Oleksiy; Artemyev, Anton; Krasnoselskikh, Vladimir
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 6
  • DOI: 10.1002/jgra.50312

Microburst phenomena: 3. An association between microbursts and VLF chorus
journal, April 1968


Two sources of dayside intense, quasi‐coherent plasmaspheric hiss: A new mechanism for the slot region?
journal, February 2017

  • Falkowski, Barbara J.; Tsurutani, Bruce T.; Lakhina, Gurbax S.
  • Journal of Geophysical Research: Space Physics, Vol. 122, Issue 2
  • DOI: 10.1002/2016JA023289

Statistical Properties of Plasmaspheric Hiss From Van Allen Probes Observations: STATISTICS OF PLASMASPHERIC HISS
journal, April 2018

  • Hartley, D. P.; Kletzing, C. A.; Santolík, O.
  • Journal of Geophysical Research: Space Physics, Vol. 123, Issue 4
  • DOI: 10.1002/2017JA024593

Oblique Whistler-Mode Waves in the Earth’s Inner Magnetosphere: Energy Distribution, Origins, and Role in Radiation Belt Dynamics
journal, April 2016

  • Artemyev, Anton; Agapitov, Oleksiy; Mourenas, Didier
  • Space Science Reviews, Vol. 200, Issue 1-4
  • DOI: 10.1007/s11214-016-0252-5

First multipoint in situ observations of electron microbursts: Initial results from the NSF FIREBIRD II mission: FIREBIRD SPATIAL SCALE OF MICROBURSTS
journal, June 2016

  • Crew, Alexander B.; Spence, Harlan E.; Blake, J. Bernard
  • Journal of Geophysical Research: Space Physics, Vol. 121, Issue 6
  • DOI: 10.1002/2016JA022485

Multiple time-scale beats in aurora: precise orchestration via magnetospheric chorus waves
journal, February 2020


Modeling the wave normal distribution of chorus waves: CHORUS WAVE NORMAL ANGLE
journal, March 2013

  • Chen, Lunjin; Thorne, Richard M.; Li, Wen
  • Journal of Geophysical Research: Space Physics, Vol. 118, Issue 3
  • DOI: 10.1029/2012JA018343

Plasmaspheric hiss
journal, April 1973

  • Thorne, Richard M.; Smith, Edward J.; Burton, Rande K.
  • Journal of Geophysical Research, Vol. 78, Issue 10
  • DOI: 10.1029/JA078i010p01581

Simultaneous Observations of Lower Band Chorus Emissions at the Equator and Microburst Precipitating Electrons in the Ionosphere
journal, January 2018

  • Mozer, F. S.; Agapitov, O. V.; Blake, J. B.
  • Geophysical Research Letters, Vol. 45, Issue 2
  • DOI: 10.1002/2017GL076120

Oblique propagation of whistler mode waves in the chorus source region: OBLIQUE CHORUS
journal, December 2009

  • Santolík, O.; Gurnett, D. A.; Pickett, J. S.
  • Journal of Geophysical Research: Space Physics, Vol. 114, Issue A12
  • DOI: 10.1029/2009JA014586

Geospace exploration project ERG
journal, June 2018

  • Miyoshi, Yoshizumi; Shinohara, Iku; Takashima, Takeshi
  • Earth, Planets and Space, Vol. 70, Issue 1
  • DOI: 10.1186/s40623-018-0862-0

Global distribution of wave amplitudes and wave normal angles of chorus waves using THEMIS wave observations: CHORUS WAVE DISTRIBUTION ON THEMIS
journal, December 2011

  • Li, W.; Bortnik, J.; Thorne, R. M.
  • Journal of Geophysical Research: Space Physics, Vol. 116, Issue A12
  • DOI: 10.1029/2011JA017035

Visualization of rapid electron precipitation via chorus element wave–particle interactions
journal, January 2019


Scattering by chorus waves as the dominant cause of diffuse auroral precipitation
journal, October 2010

  • Thorne, Richard M.; Ni, Binbin; Tao, Xin
  • Nature, Vol. 467, Issue 7318
  • DOI: 10.1038/nature09467