DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory

Abstract

Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth’s atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2C=O+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. Specific conformational forms of MVK-oxide (syn) undergo intramolecular 1,4 Hatom transfer to form an isomeric vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxy radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 Torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is themore » dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [4];  [5]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [5]; ORCiD logo [4]; ORCiD logo [6]; ORCiD logo [5]; ORCiD logo [1]
  1. Univ. of Pennsylvania, Philadelphia, PA (United States)
  2. California Institute of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab. (JPL); Sandia National Lab. (SNL-CA), Livermore, CA (United States); Argonne National Lab. (ANL), Argonne, IL (United States)
  3. Univ. of Pennsylvania, Philadelphia, PA (United States); Univ. of California, San Diego, CA (United States)
  4. California Institute of Technology (CalTech), Pasadena, CA (United States). Jet Propulsion Lab. (JPL)
  5. Sandia National Lab. (SNL-CA), Livermore, CA (United States)
  6. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-CA), Livermore, CA (United States); Argonne National Laboratory (ANL), Argonne, IL (United States); Univ. of Pennsylvania, Philadelphia, PA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); USDOE Office of Science (SC), Basic Energy Sciences (BES). Chemical Sciences, Geosciences & Biosciences Division
OSTI Identifier:
1738934
Alternate Identifier(s):
OSTI ID: 1720197; OSTI ID: 1775135; OSTI ID: 1782238
Report Number(s):
SAND-2020-13940J
Journal ID: ISSN 1463-9076; 692938
Grant/Contract Number:  
AC04-94AL85000; FG02-87ER13792; NA0003525; AC02-06CH11357; AC02-05CH11231; CHE-1902509
Resource Type:
Accepted Manuscript
Journal Name:
Physical Chemistry Chemical Physics. PCCP
Additional Journal Information:
Journal Volume: 22; Journal Issue: 46; Journal ID: ISSN 1463-9076
Publisher:
Royal Society of Chemistry
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Vansco, Michael F., Caravan, Rebecca L., Pandit, Shubhrangshu, Zuraski, Kristen, Winiberg, Frank A. F., Au, Kendrew, Bhagde, Trisha, Trongsiriwat, Nisalak, Walsh, Patrick J., Osborn, David L., Percival, Carl J., Klippenstein, Stephen J., Taatjes, Craig A., and Lester, Marsha I. Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. United States: N. p., 2020. Web. doi:10.1039/d0cp05018k.
Vansco, Michael F., Caravan, Rebecca L., Pandit, Shubhrangshu, Zuraski, Kristen, Winiberg, Frank A. F., Au, Kendrew, Bhagde, Trisha, Trongsiriwat, Nisalak, Walsh, Patrick J., Osborn, David L., Percival, Carl J., Klippenstein, Stephen J., Taatjes, Craig A., & Lester, Marsha I. Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory. United States. https://doi.org/10.1039/d0cp05018k
Vansco, Michael F., Caravan, Rebecca L., Pandit, Shubhrangshu, Zuraski, Kristen, Winiberg, Frank A. F., Au, Kendrew, Bhagde, Trisha, Trongsiriwat, Nisalak, Walsh, Patrick J., Osborn, David L., Percival, Carl J., Klippenstein, Stephen J., Taatjes, Craig A., and Lester, Marsha I. Wed . "Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory". United States. https://doi.org/10.1039/d0cp05018k. https://www.osti.gov/servlets/purl/1738934.
@article{osti_1738934,
title = {Formic acid catalyzed isomerization and adduct formation of an isoprene-derived Criegee intermediate: experiment and theory},
author = {Vansco, Michael F. and Caravan, Rebecca L. and Pandit, Shubhrangshu and Zuraski, Kristen and Winiberg, Frank A. F. and Au, Kendrew and Bhagde, Trisha and Trongsiriwat, Nisalak and Walsh, Patrick J. and Osborn, David L. and Percival, Carl J. and Klippenstein, Stephen J. and Taatjes, Craig A. and Lester, Marsha I.},
abstractNote = {Isoprene is the most abundant non-methane hydrocarbon emitted into the Earth’s atmosphere. Ozonolysis is an important atmospheric sink for isoprene, which generates reactive carbonyl oxide species (R1R2C=O+O-) known as Criegee intermediates. This study focuses on characterizing the catalyzed isomerization and adduct formation pathways for the reaction between formic acid and methyl vinyl ketone oxide (MVK-oxide), a four-carbon unsaturated Criegee intermediate generated from isoprene ozonolysis. Specific conformational forms of MVK-oxide (syn) undergo intramolecular 1,4 Hatom transfer to form an isomeric vinyl hydroperoxide intermediate, 2-hydroperoxybuta-1,3-diene (HPBD), which subsequently decomposes to hydroxyl and vinoxy radical products. Here, we report direct observation of HPBD generated by formic acid catalyzed isomerization of MVK-oxide under thermal conditions (298 K, 10 Torr) using multiplexed photoionization mass spectrometry. The acid catalyzed isomerization of MVK-oxide proceeds by a double hydrogen-bonded interaction followed by a concerted H-atom transfer via submerged barriers to produce HPBD and regenerate formic acid. The analogous isomerization pathway catalyzed with deuterated formic acid (D2-formic acid) enables migration of a D atom to yield partially deuterated HPBD (DPBD), which is identified by its distinct mass (m/z 87) and photoionization threshold. In addition, bimolecular reaction of MVK-oxide with D2-formic acid forms a functionalized hydroperoxide adduct, which is the dominant product channel, and is compared to a previous bimolecular reaction study with normal formic acid. Complementary high-level theoretical calculations are performed to further investigate the reaction pathways and kinetics.},
doi = {10.1039/d0cp05018k},
journal = {Physical Chemistry Chemical Physics. PCCP},
number = 46,
volume = 22,
place = {United States},
year = {Wed Nov 11 00:00:00 EST 2020},
month = {Wed Nov 11 00:00:00 EST 2020}
}

Works referenced in this record:

Laser‐induced fluorescence of the C 2 H 3 O radical
journal, January 1981

  • Inoue, Gen; Akimoto, Hajime
  • The Journal of Chemical Physics, Vol. 74, Issue 1
  • DOI: 10.1063/1.440848

Atmospheric fates of Criegee intermediates in the ozonolysis of isoprene
journal, January 2016

  • Nguyen, Tran B.; Tyndall, Geoffrey S.; Crounse, John D.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 15
  • DOI: 10.1039/C6CP00053C

Theoretical Study of Formic Acid Anhydride Formation from Carbonyl Oxide in the Atmosphere
journal, January 2000

  • Aplincourt, P.; Ruiz-López, M. F.
  • The Journal of Physical Chemistry A, Vol. 104, Issue 2
  • DOI: 10.1021/jp9928208

Laboratory studies of organic peroxy radical chemistry: an overview with emphasis on recent issues of atmospheric significance
journal, January 2012

  • Orlando, John J.; Tyndall, Geoffrey S.
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35166h

CH Stretch Activation of CH 3 CHOO: Deep Tunneling to Hydroxyl Radical Products
journal, March 2019

  • Barber, Victoria P.; Pandit, Shubhrangshu; Esposito, Vincent J.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 13
  • DOI: 10.1021/acs.jpca.8b12324

Direct observation of vinyl hydroperoxide
journal, January 2015

  • Liu, Fang; Fang, Yi; Kumar, Manoj
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 32
  • DOI: 10.1039/C5CP02917A

Electronic spectroscopy of methyl vinyl ketone oxide: A four-carbon unsaturated Criegee intermediate from isoprene ozonolysis
journal, December 2018

  • Vansco, Michael F.; Marchetti, Barbara; Lester, Marsha I.
  • The Journal of Chemical Physics, Vol. 149, Issue 24
  • DOI: 10.1063/1.5064716

Calculation of the absolute photoionization cross-sections for C1–C4 Criegee intermediates and vinyl hydroperoxides
journal, April 2019

  • Huang, Can; Yang, Bin; Zhang, Feng
  • The Journal of Chemical Physics, Vol. 150, Issue 16
  • DOI: 10.1063/1.5088408

2,3-Dimethyl-2-butene (TME) Ozonolysis: Pressure Dependence of Stabilized Criegee Intermediates and Evidence of Stabilized Vinyl Hydroperoxides
journal, January 2011

  • Drozd, Greg T.; Kroll, Jesse; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 115, Issue 2
  • DOI: 10.1021/jp108773d

Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years
journal, January 2014

  • Sindelarova, K.; Granier, C.; Bouarar, I.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 17
  • DOI: 10.5194/acp-14-9317-2014

Characterization of the 2-methylvinoxy radical + O 2 reaction: A focal point analysis and composite multireference study
journal, September 2019

  • Davis, Matthew M.; Weidman, Jared D.; Abbott, Adam S.
  • The Journal of Chemical Physics, Vol. 151, Issue 12
  • DOI: 10.1063/1.5113800

Deep tunneling in the unimolecular decay of CH 3 CHOO Criegee intermediates to OH radical products
journal, December 2016

  • Fang, Yi; Liu, Fang; Barber, Victoria P.
  • The Journal of Chemical Physics, Vol. 145, Issue 23
  • DOI: 10.1063/1.4972015

Direct kinetic measurements and theoretical predictions of an isoprene-derived Criegee intermediate
journal, April 2020

  • Caravan, Rebecca L.; Vansco, Michael F.; Au, Kendrew
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 18
  • DOI: 10.1073/pnas.1916711117

Theoretical study on the detailed reaction mechanisms of carbonyl oxide with formic acid
journal, December 2009


The Importance of Peroxy Radical Hydrogen-Shift Reactions in Atmospheric Isoprene Oxidation
journal, January 2019

  • Møller, Kristian H.; Bates, Kelvin H.; Kjaergaard, Henrik G.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 4
  • DOI: 10.1021/acs.jpca.8b10432

Barrierless tautomerization of Criegee intermediates via acid catalysis
journal, January 2014

  • Kumar, Manoj; Busch, Daryle H.; Subramaniam, Bala
  • Phys. Chem. Chem. Phys., Vol. 16, Issue 42
  • DOI: 10.1039/C4CP03065F

Rapid Autoxidation Forms Highly Oxidized RO 2 Radicals in the Atmosphere
journal, October 2014

  • Jokinen, Tuija; Sipilä, Mikko; Richters, Stefanie
  • Angewandte Chemie International Edition, Vol. 53, Issue 52
  • DOI: 10.1002/anie.201408566

Formation of Low-Volatility Organic Compounds in the Atmosphere: Recent Advancements and Insights
journal, March 2017

  • Barsanti, Kelley C.; Kroll, Jesse H.; Thornton, Joel A.
  • The Journal of Physical Chemistry Letters, Vol. 8, Issue 7
  • DOI: 10.1021/acs.jpclett.6b02969

Kinetic Study on Reactions of 1- and 2-Methylvinoxy Radicals with O 2
journal, January 2001

  • Oguchi, Tatsuo; Miyoshi, Akira; Koshi, Mitsuo
  • The Journal of Physical Chemistry A, Vol. 105, Issue 2
  • DOI: 10.1021/jp001826q

Tunneling effects in the unimolecular decay of (CH 3 ) 2 COO Criegee intermediates to OH radical products
journal, April 2017

  • Fang, Yi; Barber, Victoria P.; Klippenstein, Stephen J.
  • The Journal of Chemical Physics, Vol. 146, Issue 13
  • DOI: 10.1063/1.4979297

Unimolecular Decay of Criegee Intermediates to OH Radical Products: Prompt and Thermal Decay Processes
journal, March 2018


Rate Coefficients and Equilibrium Constant for the CH 2 CHO + O 2 Reaction System
journal, March 2006

  • Delbos, Eric; Fittschen, Christa; Hippler, Horst
  • The Journal of Physical Chemistry A, Vol. 110, Issue 9
  • DOI: 10.1021/jp054697s

MRCISD Studies of the Dissociation of Vinylhydroperoxide, CH 2 CHOOH: There Is a Saddle Point
journal, May 2012

  • Kurtén, Theo; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 25
  • DOI: 10.1021/jp302511a

The reaction of Criegee intermediate CH 2 OO with water dimer: primary products and atmospheric impact
journal, January 2017

  • Sheps, Leonid; Rotavera, Brandon; Eskola, Arkke J.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 33
  • DOI: 10.1039/C7CP03265J

Observation of hydroperoxyethyl formate from the reaction between the methyl Criegee intermediate and formic acid
journal, January 2020

  • Cabezas, Carlos; Endo, Yasuki
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 2
  • DOI: 10.1039/C9CP05030B

Calculated Hydrogen Shift Rate Constants in Substituted Alkyl Peroxy Radicals
journal, September 2018

  • Otkjær, Rasmus V.; Jakobsen, Helene H.; Tram, Camilla Mia
  • The Journal of Physical Chemistry A, Vol. 122, Issue 43
  • DOI: 10.1021/acs.jpca.8b06223

Experimental Evidence of Dioxole Unimolecular Decay Pathway for Isoprene-Derived Criegee Intermediates
journal, April 2020

  • Vansco, Michael F.; Caravan, Rebecca L.; Zuraski, Kristen
  • The Journal of Physical Chemistry A, Vol. 124, Issue 18
  • DOI: 10.1021/acs.jpca.0c02138

Water Catalysis of a Radical-Molecule Gas-Phase Reaction
journal, January 2007


The reaction of Criegee intermediates with acids and enols
journal, January 2017

  • Vereecken, L.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 42
  • DOI: 10.1039/C7CP05132H

The multiplexed chemical kinetic photoionization mass spectrometer: A new approach to isomer-resolved chemical kinetics
journal, October 2008

  • Osborn, David L.; Zou, Peng; Johnsen, Howard
  • Review of Scientific Instruments, Vol. 79, Issue 10
  • DOI: 10.1063/1.3000004

Theoretical kinetic study of the formic acid catalyzed Criegee intermediate isomerization: multistructural anharmonicity and atmospheric implications
journal, January 2018

  • Monge-Palacios, M.; Rissanen, Matti P.; Wang, Zhandong
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 16
  • DOI: 10.1039/C7CP08538A

Quantum Chemical and Statistical Rate Theory Studies of the Vinyl Hydroperoxides Formed in trans -2-Butene and 2,3-Dimethyl-2-butene Ozonolysis
journal, February 2018

  • Kuwata, Keith T.; Luu, Lina; Weberg, Alexander B.
  • The Journal of Physical Chemistry A, Vol. 122, Issue 9
  • DOI: 10.1021/acs.jpca.8b00287

High-level theoretical characterization of the vinoxy radical ( CH 2 CHO) + O 2 reaction
journal, May 2018

  • Weidman, Jared D.; Allen, Ryan T.; Moore, Kevin B.
  • The Journal of Chemical Physics, Vol. 148, Issue 18
  • DOI: 10.1063/1.5026295

Four-Carbon Criegee Intermediate from Isoprene Ozonolysis: Methyl Vinyl Ketone Oxide Synthesis, Infrared Spectrum, and OH Production
journal, July 2018

  • Barber, Victoria P.; Pandit, Shubhrangshu; Green, Amy M.
  • Journal of the American Chemical Society, Vol. 140, Issue 34
  • DOI: 10.1021/jacs.8b06010

Rate Coefficients of C1 and C2 Criegee Intermediate Reactions with Formic and Acetic Acid Near the Collision Limit: Direct Kinetics Measurements and Atmospheric Implications
journal, March 2014

  • Welz, Oliver; Eskola, Arkke J.; Sheps, Leonid
  • Angewandte Chemie International Edition, Vol. 53, Issue 18
  • DOI: 10.1002/anie.201400964

A large source of low-volatility secondary organic aerosol
journal, February 2014

  • Ehn, Mikael; Thornton, Joel A.; Kleist, Einhard
  • Nature, Vol. 506, Issue 7489
  • DOI: 10.1038/nature13032

Catalytic Effect of Water, Formic Acid, or Sulfuric Acid on the Reaction of Formaldehyde with OH Radicals
journal, June 2014

  • Zhang, Weichao; Du, Benni; Qin, Zhenglong
  • The Journal of Physical Chemistry A, Vol. 118, Issue 26
  • DOI: 10.1021/jp502886p

Unimolecular decay dynamics of Criegee intermediates: Energy-resolved rates, thermal rates, and their atmospheric impact
journal, December 2019


Autoxidation of Organic Compounds in the Atmosphere
journal, September 2013

  • Crounse, John D.; Nielsen, Lasse B.; Jørgensen, Solvejg
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 20
  • DOI: 10.1021/jz4019207

Adventures in ozoneland: down the rabbit-hole
journal, January 2011

  • Donahue, Neil M.; Drozd, Greg T.; Epstein, Scott A.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 23
  • DOI: 10.1039/c0cp02564j

Catalysis and tunnelling in the unimolecular decay of Criegee intermediates
journal, January 2018

  • Burd, Timothy A. H.; Shan, Xiao; Clary, David C.
  • Physical Chemistry Chemical Physics, Vol. 20, Issue 39
  • DOI: 10.1039/C8CP05021J

Experimental and computational investigation of vinoxy and 1-methylvinoxy radicals from the unimolecular decay of alkyl-substituted Criegee intermediates
journal, July 2020


Evidence and evolution of Criegee intermediates, hydroperoxides and secondary organic aerosols formed via ozonolysis of α-pinene
journal, January 2020

  • Bagchi, Arnab; Yu, Youqing; Huang, Jhih-Hong
  • Physical Chemistry Chemical Physics, Vol. 22, Issue 12
  • DOI: 10.1039/C9CP06306D

Effects of water vapor on the reaction of CH 2 OO with NH 3
journal, January 2019

  • Chao, Wen; Yin, Cangtao; Takahashi, Kaito
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 40
  • DOI: 10.1039/C9CP04682H

Atmospheric Chemistry of Criegee Intermediates: Unimolecular Reactions and Reactions with Water
journal, October 2016

  • Long, Bo; Bao, Junwei Lucas; Truhlar, Donald G.
  • Journal of the American Chemical Society, Vol. 138, Issue 43
  • DOI: 10.1021/jacs.6b08655

Intramolecular Hydrogen Shift Chemistry of Hydroperoxy-Substituted Peroxy Radicals
journal, December 2018

  • Praske, Eric; Otkjær, Rasmus V.; Crounse, John D.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 2
  • DOI: 10.1021/acs.jpca.8b09745

An Extended Computational Study of Criegee Intermediate–Alcohol Reactions
journal, December 2018

  • Watson, Nathan A. I.; Black, Joshua A.; Stonelake, Thomas M.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 1
  • DOI: 10.1021/acs.jpca.8b09349

Unraveling Conformer-Specific Sources of Hydroxyl Radical Production from an Isoprene-Derived Criegee Intermediate by Deuteration
journal, May 2020

  • Hansen, Anne S.; Liu, Ziao; Chen, Shuguang
  • The Journal of Physical Chemistry A, Vol. 124, Issue 24
  • DOI: 10.1021/acs.jpca.0c02867

Unimolecular decay strongly limits the atmospheric impact of Criegee intermediates
journal, January 2017

  • Vereecken, L.; Novelli, A.; Taraborrelli, D.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 47
  • DOI: 10.1039/C7CP05541B

Atmospheric Autoxidation of Amines
journal, August 2020

  • Møller, Kristian H.; Berndt, Torsten; Kjaergaard, Henrik G.
  • Environmental Science & Technology, Vol. 54, Issue 18
  • DOI: 10.1021/acs.est.0c03937

Hydroxyacetone Production From C 3 Criegee Intermediates
journal, December 2016

  • Taatjes, Craig A.; Liu, Fang; Rotavera, Brandon
  • The Journal of Physical Chemistry A, Vol. 121, Issue 1
  • DOI: 10.1021/acs.jpca.6b07712

Infrared-driven unimolecular reaction of CH3CHOO Criegee intermediates to OH radical products
journal, September 2014


Direct observation of unimolecular decay of CH 3 CH 2 CHOO Criegee intermediates to OH radical products
journal, July 2016

  • Fang, Yi; Liu, Fang; Klippenstein, Stephen J.
  • The Journal of Chemical Physics, Vol. 145, Issue 4
  • DOI: 10.1063/1.4958992

Communication: Real time observation of unimolecular decay of Criegee intermediates to OH radical products
journal, February 2016

  • Fang, Yi; Liu, Fang; Barber, Victoria P.
  • The Journal of Chemical Physics, Vol. 144, Issue 6
  • DOI: 10.1063/1.4941768

Rate and Equilibrium Constant of the Reaction of 1-Methylvinoxy Radicals with O 2 :  CH 3 COCH 2 + O 2 ↔ CH 3 COCH 2 O 2
journal, June 2006

  • Hassouna, Melynda; Delbos, Eric; Devolder, Pascal
  • The Journal of Physical Chemistry A, Vol. 110, Issue 21
  • DOI: 10.1021/jp0558270

Direct evidence for a substantive reaction between the Criegee intermediate, CH 2 OO, and the water vapour dimer
journal, January 2015

  • Lewis, Tom R.; Blitz, Mark A.; Heard, Dwayne E.
  • Physical Chemistry Chemical Physics, Vol. 17, Issue 7
  • DOI: 10.1039/C4CP04750H

Direct production of OH radicals upon CH overtone activation of (CH 3 ) 2 COO Criegee intermediates
journal, December 2014

  • Liu, Fang; Beames, Joseph M.; Lester, Marsha I.
  • The Journal of Chemical Physics, Vol. 141, Issue 23
  • DOI: 10.1063/1.4903961

Electronic structure of vinoxy radical CH 2 CHO
journal, January 1982

  • Dupuis, M.; Wendoloski, J. J.; Lester, W. A.
  • The Journal of Chemical Physics, Vol. 76, Issue 1
  • DOI: 10.1063/1.442749

Role of Double Hydrogen Atom Transfer Reactions in Atmospheric Chemistry
journal, April 2016


The Criegee intermediate-formic acid reaction explored by rotational spectroscopy
journal, January 2019

  • Cabezas, Carlos; Endo, Yasuki
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 33
  • DOI: 10.1039/C9CP03001H

Unexpected Epoxide Formation in the Gas-Phase Photooxidation of Isoprene
journal, August 2009


Hydrogen-Bonding Mediated Reactions of Criegee Intermediates in the Gas Phase: Competition between Bimolecular and Termolecular Reactions and the Catalytic Role of Water
journal, September 2019

  • Chao, Wen; Yin, Cangtao; Takahashi, Kaito
  • The Journal of Physical Chemistry A, Vol. 123, Issue 39
  • DOI: 10.1021/acs.jpca.9b07117

Criegee Intermediate Reactions with Carboxylic Acids: A Potential Source of Secondary Organic Aerosol in the Atmosphere
journal, June 2018


Works referencing / citing this record: