DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Laser propagation in a subcritical foam: Subgrid model

Abstract

Here, we present a subgrid model for laser propagation in a subcritical foam. Our model describes the expansion of laser-irradiated foam elements that are below the resolution of the simulation grid and predicts the plasma conditions that result from burning down the foam. Our model can be included as a module within a larger multiphysics code, and we have implemented it within the code pF3D, which is used for simulating a laser-plasma interaction. The model predicts a reduced propagation velocity for a laser through a subcritical foam compared to simulating that foam as a homogeneous gas. This is attributed to the laser energy that goes into burning down the foam microstructure. We compare our model against experimental data by simulating a 2 mg/cc SiO2 foam shot performed at the Janus laser facility at the Lawrence Livermore National Laboratory. pF3D simulations with the foam model predict hot ion temperatures. This leads to a reduction in the level of stimulated Brillouin scattering (SBS), bringing the simulated level of SBS into agreement with the data. Intensity fluctuations at the foam front due to laser speckles and refraction result in ion temperature fluctuations when the foam burns down. These drive long-lived electron density fluctuationsmore » on scales that are large compared to the pore size.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of California, Los Angeles, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1738902
Alternate Identifier(s):
OSTI ID: 1708960
Report Number(s):
LLNL-JRNL-812269
Journal ID: ISSN 1070-664X; 1018945; TRN: US2205386
Grant/Contract Number:  
AC52-07NA27344; LDRD-17-ERD-118
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; energy equations; photoionization; plasma properties and parameters; plasma waves; laser plasma interactions; aerogel; light scattering

Citation Formats

Belyaev, M. A., Berger, R. L., Jones, O. S., Langer, S. H., Mariscal, D. A., Milovich, J., and Winjum, B. Laser propagation in a subcritical foam: Subgrid model. United States: N. p., 2020. Web. doi:10.1063/5.0022952.
Belyaev, M. A., Berger, R. L., Jones, O. S., Langer, S. H., Mariscal, D. A., Milovich, J., & Winjum, B. Laser propagation in a subcritical foam: Subgrid model. United States. https://doi.org/10.1063/5.0022952
Belyaev, M. A., Berger, R. L., Jones, O. S., Langer, S. H., Mariscal, D. A., Milovich, J., and Winjum, B. Sun . "Laser propagation in a subcritical foam: Subgrid model". United States. https://doi.org/10.1063/5.0022952. https://www.osti.gov/servlets/purl/1738902.
@article{osti_1738902,
title = {Laser propagation in a subcritical foam: Subgrid model},
author = {Belyaev, M. A. and Berger, R. L. and Jones, O. S. and Langer, S. H. and Mariscal, D. A. and Milovich, J. and Winjum, B.},
abstractNote = {Here, we present a subgrid model for laser propagation in a subcritical foam. Our model describes the expansion of laser-irradiated foam elements that are below the resolution of the simulation grid and predicts the plasma conditions that result from burning down the foam. Our model can be included as a module within a larger multiphysics code, and we have implemented it within the code pF3D, which is used for simulating a laser-plasma interaction. The model predicts a reduced propagation velocity for a laser through a subcritical foam compared to simulating that foam as a homogeneous gas. This is attributed to the laser energy that goes into burning down the foam microstructure. We compare our model against experimental data by simulating a 2 mg/cc SiO2 foam shot performed at the Janus laser facility at the Lawrence Livermore National Laboratory. pF3D simulations with the foam model predict hot ion temperatures. This leads to a reduction in the level of stimulated Brillouin scattering (SBS), bringing the simulated level of SBS into agreement with the data. Intensity fluctuations at the foam front due to laser speckles and refraction result in ion temperature fluctuations when the foam burns down. These drive long-lived electron density fluctuations on scales that are large compared to the pore size.},
doi = {10.1063/5.0022952},
journal = {Physics of Plasmas},
number = 11,
volume = 27,
place = {United States},
year = {Sun Nov 01 00:00:00 EDT 2020},
month = {Sun Nov 01 00:00:00 EDT 2020}
}

Works referenced in this record:

Laser damage in silicon: Energy absorption, relaxation, and transport
journal, August 2014

  • Rämer, A.; Osmani, O.; Rethfeld, B.
  • Journal of Applied Physics, Vol. 116, Issue 5
  • DOI: 10.1063/1.4891633

Low-density absorber—converter in direct-irradiation laser thermonuclear targets
journal, April 2001


Laser-supported hydrothermal wave in low-dense porous substance
journal, March 2018


Bright x-ray sources from laser irradiation of foams with high concentration of Ti
journal, February 2014

  • Pérez, F.; Patterson, J. R.; May, M.
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4864330

Reducing wall plasma expansion with gold foam irradiated by laser
journal, November 2015

  • Zhang, Lu; Ding, Yongkun; Jiang, Shaoen
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4935381

Laser-driven hydrothermal wave speed in low-Z foam of overcritical density
journal, September 2018

  • Cipriani, M.; Gus'kov, S. Yu.; De Angelis, R.
  • Physics of Plasmas, Vol. 25, Issue 9
  • DOI: 10.1063/1.5041511

A role for electron viscosity in plasma shock heating
journal, October 2001

  • Velikovich, A. L.; Whitney, K. G.; Thornhill, J. W.
  • Physics of Plasmas, Vol. 8, Issue 10
  • DOI: 10.1063/1.1400126

Experimental evidence of foam homogenization
journal, November 2012

  • Nicolaï, Ph.; Olazabal-Loumé, M.; Fujioka, S.
  • Physics of Plasmas, Vol. 19, Issue 11
  • DOI: 10.1063/1.4766470

Absorption coefficient for nanosecond laser pulse in porous material
journal, October 2015


The effects of microstructure on propagation of laser-driven radiative heat waves in under-dense high-Z plasma
journal, March 2018

  • Colvin, J. D.; Matsukuma, H.; Brown, K. C.
  • Physics of Plasmas, Vol. 25, Issue 3
  • DOI: 10.1063/1.5012523

Momentum and heat conduction in highly ionizable plasmas
journal, March 1999


Laser-supported ionization wave in under-dense gases and foams
journal, October 2011

  • Gus’kov, S. Yu.; Limpouch, J.; Nicolaï, Ph.
  • Physics of Plasmas, Vol. 18, Issue 10
  • DOI: 10.1063/1.3642615

Hydrodynamic simulation of subpicosecond laser interaction with solid-density matter
journal, July 2000


X-ray spectral measurement of high-temperature plasma parameters in porous targets irradiated with high-power laser pulses
journal, December 2001


Modelling ultrafast laser ablation
journal, April 2017

  • Rethfeld, Baerbel; Ivanov, Dmitriy S.; Garcia, Martin E.
  • Journal of Physics D: Applied Physics, Vol. 50, Issue 19
  • DOI: 10.1088/1361-6463/50/19/193001

Power-driven and adiabatic expansions into vacuum
journal, January 1980

  • Farnsworth, Archie V.
  • Physics of Fluids, Vol. 23, Issue 8
  • DOI: 10.1063/1.863175

Hydrodynamic description of an unmagnetized plasma with multiple ion species. II. Two and three ion species plasmas
journal, March 2016

  • Simakov, Andrei N.; Molvig, Kim
  • Physics of Plasmas, Vol. 23, Issue 3
  • DOI: 10.1063/1.4943895

Hydrodynamics of exploding foil x-ray lasers
journal, January 1986

  • London, Richard A.; Rosen, M. D.
  • Physics of Fluids, Vol. 29, Issue 11
  • DOI: 10.1063/1.865764

Use of X-Ray Preheated Foam Layers to Reduce Beam Structure Imprint in Laser-Driven Targets
journal, April 1995


Beam nonparaxiality, filament formation, and beam breakup in the self-focusing of optical beams
journal, January 1988

  • Feit, M. D.; Fleck, J. A.
  • Journal of the Optical Society of America B, Vol. 5, Issue 3
  • DOI: 10.1364/JOSAB.5.000633

Laser implosion of thick low‐ Z foam coated glass microballoon
journal, February 1983

  • Okada, K.; Mochizuki, T.; Sakabe, S.
  • Applied Physics Letters, Vol. 42, Issue 3
  • DOI: 10.1063/1.93890

Microscopic processes in dielectrics under irradiation by subpicosecond laser pulses
journal, May 2000


Laser ionization and heating of gas targets for long‐scale‐length instability experiments
journal, June 1994

  • Denavit, J.; Phillion, D. W.
  • Physics of Plasmas, Vol. 1, Issue 6
  • DOI: 10.1063/1.870653

On the dominant and subdominant behavior of stimulated Raman and Brillouin scattering driven by nonuniform laser beams
journal, December 1998

  • Berger, R. L.; Still, C. H.; Williams, E. A.
  • Physics of Plasmas, Vol. 5, Issue 12
  • DOI: 10.1063/1.873171

The frequency and damping of ion acoustic waves in hydrocarbon (CH) and two‐ion‐species plasmas
journal, January 1995

  • Williams, E. A.; Berger, R. L.; Drake, R. P.
  • Physics of Plasmas, Vol. 2, Issue 1
  • DOI: 10.1063/1.871101

Regular Foams, Loaded Foams and Capsule Suspension in the Foam for Hohlraums in ICF
journal, July 2000

  • Borisenko, N. G.; Gromov, A. I.; Merkulev, Yu. A.
  • Fusion Technology, Vol. 38, Issue 1
  • DOI: 10.13182/FST00-A36126

Development of high intensity X-ray sources at the National Ignition Facility
journal, May 2018

  • May, M. J.; Colvin, J. D.; Kemp, G. E.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5015927

Cretin—a radiative transfer capability for laboratory plasmas
journal, October 2001


Time‐resolved x‐ray imaging of high‐power laser‐irradiated underdense silica aerogels and agar foams
journal, October 1995

  • Koch, J. A.; Estabrook, K. G.; Bauer, J. D.
  • Physics of Plasmas, Vol. 2, Issue 10
  • DOI: 10.1063/1.871081

On the Production of Plasma by Giant Pulse Lasers
journal, January 1964


Hydrodynamic modeling of laser interaction with micro-structured targets
journal, August 2016


Characterization of residual inhomogeneities in a plasma created by laser ionization of a low-density foam
journal, February 2020

  • Limpouch, J.; Tikhonchuk, V. T.; Dostál, J.
  • Plasma Physics and Controlled Fusion, Vol. 62, Issue 3
  • DOI: 10.1088/1361-6587/ab6b4d

Laser propagation in a subcritical foam: Ion and electron heating
journal, December 2018

  • Belyaev, M. A.; Berger, R. L.; Jones, O. S.
  • Physics of Plasmas, Vol. 25, Issue 12
  • DOI: 10.1063/1.5050531

Laser Smoothing and Imprint Reduction with a Foam Layer in the Multikilojoule Regime
journal, May 2009


Free-electron generation in laser-irradiated dielectrics
journal, January 2006


A new hybrid target concept for multi-keV X-ray sources
journal, December 2013


Three-dimensional HYDRA simulations of National Ignition Facility targets
journal, May 2001

  • Marinak, M. M.; Kerbel, G. D.; Gentile, N. A.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1356740