DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer

Abstract

A solar-driven conversion of CO2 into fuels by artificial photosynthesis would not only mitigate the greenhouse effect but also provide an alternative to obtain fuels in a renewable fashion. To this end, the new iron polypyridine catalyst [Fe(bpyNHEtPY2Me)L2]2+ (L = H2O, CH3CN) was recently developed for the electrochemical reduction of CO2 to CO. Here, we performed density functional theory (DFT) electronic structure calculations to shed light on a possible pathway for CO2 reduction and the origin of the selectivity between CO2 reduction versus the hydrogen evolution reaction. The metal center remains Lewis acidic throughout the reduction process due to ligand loss and mainly ligand-based reduction stabilized by antiferromagnetic coupling to a high-spin Fe(II) center. This results in a high barrier for hydride formation but a facile addition and activation of CO2 via an η2 coordination and stabilizing hydrogen bonding by the amine group. The second unoccupied equatorial coordination site opens up the possibility for an intramolecular protonation with a coordinated water ligand. This facilitates protonation because not only CO2 but also the proton source H2O is activated and properly aligned for a proton transfer due to the Fe-OH2 bond; consequently, both protonation steps are facile. The moderate ligand field allowsmore » a rapid ligand exchange for a second intramolecular protonation step and facilitates an exergonic CO release. The lower selectivity of the related [Fe(bpyOHPY2Me)L2]2+ complex can be related to its more acidic second coordination sphere, which enables an intramolecular proton transfer that is kinetically competitive with CO2 addition.« less

Authors:
ORCiD logo [1];  [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  2. Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); State Univ. of New York (SUNY), Binghamton, NY (United States)
Publication Date:
Research Org.:
Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Advanced Scientific Computing Research (ASCR). Scientific Discovery through Advanced Computing (SciDAC); USDOE Office of Science (SC), Basic Energy Sciences (BES)
OSTI Identifier:
1737618
Grant/Contract Number:  
AC02-05CH11231; SC0004993; 101528-002
Resource Type:
Accepted Manuscript
Journal Name:
Inorganic Chemistry
Additional Journal Information:
Journal Volume: 59; Journal Issue: 12; Journal ID: ISSN 0020-1669
Publisher:
American Chemical Society (ACS)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Loipersberger, Matthias, Zee, David Z., Panetier, Julien A., Chang, Christopher J., Long, Jeffrey R., and Head-Gordon, Martin. Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer. United States: N. p., 2020. Web. doi:10.1021/acs.inorgchem.0c00454.
Loipersberger, Matthias, Zee, David Z., Panetier, Julien A., Chang, Christopher J., Long, Jeffrey R., & Head-Gordon, Martin. Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer. United States. https://doi.org/10.1021/acs.inorgchem.0c00454
Loipersberger, Matthias, Zee, David Z., Panetier, Julien A., Chang, Christopher J., Long, Jeffrey R., and Head-Gordon, Martin. Wed . "Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer". United States. https://doi.org/10.1021/acs.inorgchem.0c00454. https://www.osti.gov/servlets/purl/1737618.
@article{osti_1737618,
title = {Computational Study of an Iron(II) Polypyridine Electrocatalyst for CO2 Reduction: Key Roles for Intramolecular Interactions in CO2 Binding and Proton Transfer},
author = {Loipersberger, Matthias and Zee, David Z. and Panetier, Julien A. and Chang, Christopher J. and Long, Jeffrey R. and Head-Gordon, Martin},
abstractNote = {A solar-driven conversion of CO2 into fuels by artificial photosynthesis would not only mitigate the greenhouse effect but also provide an alternative to obtain fuels in a renewable fashion. To this end, the new iron polypyridine catalyst [Fe(bpyNHEtPY2Me)L2]2+ (L = H2O, CH3CN) was recently developed for the electrochemical reduction of CO2 to CO. Here, we performed density functional theory (DFT) electronic structure calculations to shed light on a possible pathway for CO2 reduction and the origin of the selectivity between CO2 reduction versus the hydrogen evolution reaction. The metal center remains Lewis acidic throughout the reduction process due to ligand loss and mainly ligand-based reduction stabilized by antiferromagnetic coupling to a high-spin Fe(II) center. This results in a high barrier for hydride formation but a facile addition and activation of CO2 via an η2 coordination and stabilizing hydrogen bonding by the amine group. The second unoccupied equatorial coordination site opens up the possibility for an intramolecular protonation with a coordinated water ligand. This facilitates protonation because not only CO2 but also the proton source H2O is activated and properly aligned for a proton transfer due to the Fe-OH2 bond; consequently, both protonation steps are facile. The moderate ligand field allows a rapid ligand exchange for a second intramolecular protonation step and facilitates an exergonic CO release. The lower selectivity of the related [Fe(bpyOHPY2Me)L2]2+ complex can be related to its more acidic second coordination sphere, which enables an intramolecular proton transfer that is kinetically competitive with CO2 addition.},
doi = {10.1021/acs.inorgchem.0c00454},
journal = {Inorganic Chemistry},
number = 12,
volume = 59,
place = {United States},
year = {Wed May 27 00:00:00 EDT 2020},
month = {Wed May 27 00:00:00 EDT 2020}
}

Works referenced in this record:

Chemical approaches to artificial photosynthesis
journal, September 2012

  • Concepcion, J. J.; House, R. L.; Papanikolas, J. M.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1212254109

Chemical Approaches to Artificial Photosynthesis. 2
journal, October 2005

  • Alstrum-Acevedo, James H.; Brennaman, M. Kyle; Meyer, Thomas J.
  • Inorganic Chemistry, Vol. 44, Issue 20
  • DOI: 10.1021/ic050904r

Frontiers, Opportunities, and Challenges in Biochemical and Chemical Catalysis of CO 2 Fixation
journal, June 2013

  • Appel, Aaron M.; Bercaw, John E.; Bocarsly, Andrew B.
  • Chemical Reviews, Vol. 113, Issue 8
  • DOI: 10.1021/cr300463y

Direct and Reversible Hydrogenation of CO2 to Formate by a Bacterial Carbon Dioxide Reductase
journal, December 2013


Recent advances in catalytic hydrogenation of carbon dioxide
journal, January 2011

  • Wang, Wei; Wang, Shengping; Ma, Xinbin
  • Chemical Society Reviews, Vol. 40, Issue 7
  • DOI: 10.1039/c1cs15008a

Photocatalytic Reduction of CO 2 on TiO 2 and Other Semiconductors
journal, June 2013

  • Habisreutinger, Severin N.; Schmidt-Mende, Lukas; Stolarczyk, Jacek K.
  • Angewandte Chemie International Edition, Vol. 52, Issue 29
  • DOI: 10.1002/anie.201207199

A review of catalysts for the electroreduction of carbon dioxide to produce low-carbon fuels
journal, January 2014

  • Qiao, Jinli; Liu, Yuyu; Hong, Feng
  • Chem. Soc. Rev., Vol. 43, Issue 2
  • DOI: 10.1039/C3CS60323G

Progress in catalyst exploration for heterogeneous CO 2 reduction and utilization: a critical review
journal, January 2017

  • Zhao, Guixia; Huang, Xiubing; Wang, Xiangxue
  • J. Mater. Chem. A, Vol. 5, Issue 41
  • DOI: 10.1039/C7TA07290B

A Gross-Margin Model for Defining Technoeconomic Benchmarks in the Electroreduction of CO 2
journal, June 2016

  • Verma, Sumit; Kim, Byoungsu; Jhong, Huei-Ru “Molly”
  • ChemSusChem, Vol. 9, Issue 15
  • DOI: 10.1002/cssc.201600394

“Catalysis in the Refining of Fischer-Tropsch Syncrude”
journal, October 2011


New insights into the electrochemical reduction of carbon dioxide on metallic copper surfaces
journal, January 2012

  • Kuhl, Kendra P.; Cave, Etosha R.; Abram, David N.
  • Energy & Environmental Science, Vol. 5, Issue 5
  • DOI: 10.1039/c2ee21234j

Controlling H + vs CO 2 Reduction Selectivity on Pb Electrodes
journal, November 2014

  • Lee, Chang Hoon; Kanan, Matthew W.
  • ACS Catalysis, Vol. 5, Issue 1
  • DOI: 10.1021/cs5017672

Identification of Possible Pathways for C–C Bond Formation during Electrochemical Reduction of CO 2 : New Theoretical Insights from an Improved Electrochemical Model
journal, April 2016

  • Goodpaster, Jason D.; Bell, Alexis T.; Head-Gordon, Martin
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 8
  • DOI: 10.1021/acs.jpclett.6b00358

Efficient Conversion of CO 2 to CO Using Tin and Other Inexpensive and Easily Prepared Post-Transition Metal Catalysts
journal, April 2015

  • Medina-Ramos, Jonnathan; Pupillo, Rachel C.; Keane, Thomas P.
  • Journal of the American Chemical Society, Vol. 137, Issue 15
  • DOI: 10.1021/ja5121088

Mechanism of CO 2 Reduction at Copper Surfaces: Pathways to C 2 Products
journal, January 2018

  • Garza, Alejandro J.; Bell, Alexis T.; Head-Gordon, Martin
  • ACS Catalysis, Vol. 8, Issue 2
  • DOI: 10.1021/acscatal.7b03477

Manganese as a Substitute for Rhenium in CO 2 Reduction Catalysts: The Importance of Acids
journal, February 2013

  • Smieja, Jonathan M.; Sampson, Matthew D.; Grice, Kyle A.
  • Inorganic Chemistry, Vol. 52, Issue 5
  • DOI: 10.1021/ic302391u

Molecular Cobalt Complexes with Pendant Amines for Selective Electrocatalytic Reduction of Carbon Dioxide to Formic Acid
journal, March 2017

  • Roy, Souvik; Sharma, Bhaskar; Pécaut, Jacques
  • Journal of the American Chemical Society, Vol. 139, Issue 10
  • DOI: 10.1021/jacs.6b11474

CO2 electrochemical catalytic reduction with a highly active cobalt phthalocyanine
journal, August 2019


A Local Proton Source Enhances CO 2 Electroreduction to CO by a Molecular Fe Catalyst
journal, October 2012


Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process
journal, November 1986

  • Beley, Marc.; Collin, Jean Paul.; Ruppert, Romain.
  • Journal of the American Chemical Society, Vol. 108, Issue 24
  • DOI: 10.1021/ja00284a003

Electrons, Photons, Protons and Earth-Abundant Metal Complexes for Molecular Catalysis of CO 2 Reduction
journal, November 2016


Electroreduction of CO 2 Catalyzed by a Heterogenized Zn–Porphyrin Complex with a Redox-Innocent Metal Center
journal, July 2017


Covalent organic frameworks comprising cobalt porphyrins for catalytic CO 2 reduction in water
journal, August 2015


Metal–Organic Frameworks for Electrocatalytic Reduction of Carbon Dioxide
journal, October 2015

  • Kornienko, Nikolay; Zhao, Yingbo; Kley, Christopher S.
  • Journal of the American Chemical Society, Vol. 137, Issue 44
  • DOI: 10.1021/jacs.5b08212

Versatile functionalization of carbon electrodes with a polypyridine ligand: metallation and electrocatalytic H + and CO 2 reduction
journal, January 2015

  • Elgrishi, Noémie; Griveau, Sophie; Chambers, Matthew B.
  • Chemical Communications, Vol. 51, Issue 14
  • DOI: 10.1039/C4CC10027A

Graphite-Conjugated Rhenium Catalysts for Carbon Dioxide Reduction
journal, February 2016

  • Oh, Seokjoon; Gallagher, James R.; Miller, Jeffrey T.
  • Journal of the American Chemical Society, Vol. 138, Issue 6
  • DOI: 10.1021/jacs.5b13080

Molecular electrocatalysts can mediate fast, selective CO 2 reduction in a flow cell
journal, July 2019


Photochemical and Photoelectrochemical Reduction of CO 2
journal, May 2012


Re(bipy-tBu)(CO) 3 Cl−improved Catalytic Activity for Reduction of Carbon Dioxide: IR-Spectroelectrochemical and Mechanistic Studies
journal, October 2010

  • Smieja, Jonathan M.; Kubiak, Clifford P.
  • Inorganic Chemistry, Vol. 49, Issue 20
  • DOI: 10.1021/ic1008363

Kinetic and structural studies, origins of selectivity, and interfacial charge transfer in the artificial photosynthesis of CO
journal, May 2012

  • Smieja, J. M.; Benson, E. E.; Kumar, B.
  • Proceedings of the National Academy of Sciences, Vol. 109, Issue 39
  • DOI: 10.1073/pnas.1119863109

The Electronic States of Rhenium Bipyridyl Electrocatalysts for CO 2 Reduction as Revealed by X-ray Absorption Spectroscopy and Computational Quantum Chemistry
journal, March 2013

  • Benson, Eric E.; Sampson, Matthew D.; Grice, Kyle A.
  • Angewandte Chemie International Edition, Vol. 52, Issue 18
  • DOI: 10.1002/anie.201209911

Direct observation of the reduction of carbon dioxide by rhenium bipyridine catalysts
journal, January 2013

  • Sampson, Matthew D.; Froehlich, Jesse D.; Smieja, Jonathan M.
  • Energy & Environmental Science, Vol. 6, Issue 12
  • DOI: 10.1039/c3ee42186d

Manganese Catalysts with Bulky Bipyridine Ligands for the Electrocatalytic Reduction of Carbon Dioxide: Eliminating Dimerization and Altering Catalysis
journal, February 2014

  • Sampson, Matthew D.; Nguyen, An D.; Grice, Kyle A.
  • Journal of the American Chemical Society, Vol. 136, Issue 14
  • DOI: 10.1021/ja501252f

Developing a Mechanistic Understanding of Molecular Electrocatalysts for CO 2 Reduction using Infrared Spectroelectrochemistry
journal, April 2014

  • Machan, Charles W.; Sampson, Matthew D.; Chabolla, Steven A.
  • Organometallics, Vol. 33, Issue 18
  • DOI: 10.1021/om500044a

Electrocatalytic Reduction of Carbon Dioxide by Mn(CN)(2,2′-bipyridine)(CO) 3 : CN Coordination Alters Mechanism
journal, August 2015


Synergistic Effects of Imidazolium-Functionalization on fac -Mn(CO) 3 Bipyridine Catalyst Platforms for Electrocatalytic Carbon Dioxide Reduction
journal, March 2019

  • Sung, Siyoung; Li, Xiaohui; Wolf, Lucienna M.
  • Journal of the American Chemical Society, Vol. 141, Issue 16
  • DOI: 10.1021/jacs.8b13657

Elucidation of the Selectivity of Proton-Dependent Electrocatalytic CO 2 Reduction by fac -Re(bpy)(CO) 3 Cl
journal, October 2013

  • Keith, John A.; Grice, Kyle A.; Kubiak, Clifford P.
  • Journal of the American Chemical Society, Vol. 135, Issue 42
  • DOI: 10.1021/ja406456g

Mechanistic Contrasts between Manganese and Rhenium Bipyridine Electrocatalysts for the Reduction of Carbon Dioxide
journal, November 2014

  • Riplinger, Christoph; Sampson, Matthew D.; Ritzmann, Andrew M.
  • Journal of the American Chemical Society, Vol. 136, Issue 46
  • DOI: 10.1021/ja508192y

Influence of Weak Brønsted Acids on Electrocatalytic CO 2 Reduction by Manganese and Rhenium Bipyridine Catalysts
journal, January 2015

  • Riplinger, Christoph; Carter, Emily A.
  • ACS Catalysis, Vol. 5, Issue 2
  • DOI: 10.1021/cs501687n

The Mechanism of Homogeneous CO 2 Reduction by Ni(cyclam): Product Selectivity, Concerted Proton–Electron Transfer and C–O Bond Cleavage
journal, June 2014

  • Song, Jinshuai; Klein, Eric L.; Neese, Frank
  • Inorganic Chemistry, Vol. 53, Issue 14
  • DOI: 10.1021/ic500829p

Kinetics of CO Addition to Ni(cyclam) + in Aqueous Solution
journal, January 1996

  • Kelly, Craig A.; Mulazzani, Quinto G.; Blinn, Elliott L.
  • Inorganic Chemistry, Vol. 35, Issue 18
  • DOI: 10.1021/ic951527t

The Homogeneous Reduction of CO 2 by [Ni(cyclam)] + : Increased Catalytic Rates with the Addition of a CO Scavenger
journal, March 2015

  • Froehlich, Jesse D.; Kubiak, Clifford P.
  • Journal of the American Chemical Society, Vol. 137, Issue 10
  • DOI: 10.1021/ja512575v

Ultraefficient homogeneous catalyst for the CO 2 -to-CO electrochemical conversion
journal, October 2014

  • Costentin, Cyrille; Passard, Guillaume; Robert, Marc
  • Proceedings of the National Academy of Sciences, Vol. 111, Issue 42
  • DOI: 10.1073/pnas.1416697111

Electronic Structure of a Formal Iron(0) Porphyrin Complex Relevant to CO 2 Reduction
journal, April 2017


Molecular catalysis of the electrochemical and photochemical reduction of CO2 with Fe and Co metal based complexes. Recent advances
journal, March 2017


Mechanisms of catalytic reduction of CO 2 with heme and nonheme metal complexes
journal, January 2018

  • Fukuzumi, Shunichi; Lee, Yong-Min; Ahn, Hyun S.
  • Chemical Science, Vol. 9, Issue 28
  • DOI: 10.1039/C8SC02220H

CO 2 Reduction on an Iron-Porphyrin Center: A Computational Study
journal, July 2019

  • Davethu, Paul A.; de Visser, Sam P.
  • The Journal of Physical Chemistry A, Vol. 123, Issue 30
  • DOI: 10.1021/acs.jpca.9b05102

Proton-Coupled Electron Transfer Cleavage of Heavy-Atom Bonds in Electrocatalytic Processes. Cleavage of a C–O Bond in the Catalyzed Electrochemical Reduction of CO 2
journal, June 2013

  • Costentin, Cyrille; Drouet, Samuel; Passard, Guillaume
  • Journal of the American Chemical Society, Vol. 135, Issue 24
  • DOI: 10.1021/ja4030148

Secondary-Sphere Effects in Molecular Electrocatalytic CO2 Reduction
journal, June 2019


A Thiourea Tether in the Second Coordination Sphere as a Binding Site for CO 2 and a Proton Donor Promotes the Electrochemical Reduction of CO 2 to CO Catalyzed by a Rhenium Bipyridine-Type Complex
journal, September 2018

  • Haviv, Eynat; Azaiza-Dabbah, Dima; Carmieli, Raanan
  • Journal of the American Chemical Society, Vol. 140, Issue 39
  • DOI: 10.1021/jacs.8b05658

Visible-Light-Driven Photocatalytic CO 2 Reduction by a Ni(II) Complex Bearing a Bioinspired Tetradentate Ligand for Selective CO Production
journal, May 2017

  • Hong, Dachao; Tsukakoshi, Yuto; Kotani, Hiroaki
  • Journal of the American Chemical Society, Vol. 139, Issue 19
  • DOI: 10.1021/jacs.7b01956

Bio-Inspired Mn(I) Complexes for the Hydrogenation of CO 2 to Formate and Formamide
journal, May 2017


Minimal Proton Channel Enables H 2 Oxidation and Production with a Water-Soluble Nickel-Based Catalyst
journal, November 2013

  • Dutta, Arnab; Lense, Sheri; Hou, Jianbo
  • Journal of the American Chemical Society, Vol. 135, Issue 49
  • DOI: 10.1021/ja407826d

Secondary Coordination Sphere Interactions Facilitate the Insertion Step in an Iridium(III) CO 2 Reduction Catalyst
journal, June 2011

  • Schmeier, Timothy J.; Dobereiner, Graham E.; Crabtree, Robert H.
  • Journal of the American Chemical Society, Vol. 133, Issue 24
  • DOI: 10.1021/ja2035514

Turning on the Protonation-First Pathway for Electrocatalytic CO 2 Reduction by Manganese Bipyridyl Tricarbonyl Complexes
journal, February 2017

  • Ngo, Ken T.; McKinnon, Meaghan; Mahanti, Bani
  • Journal of the American Chemical Society, Vol. 139, Issue 7
  • DOI: 10.1021/jacs.6b08776

Development of Molecular Electrocatalysts for Energy Storage
journal, February 2014


Positional effects of second-sphere amide pendants on electrochemical CO 2 reduction catalyzed by iron porphyrins
journal, January 2018

  • Nichols, Eva M.; Derrick, Jeffrey S.; Nistanaki, Sepand K.
  • Chemical Science, Vol. 9, Issue 11
  • DOI: 10.1039/C7SC04682K

Advances in molecular quantum chemistry contained in the Q-Chem 4 program package
journal, September 2014


Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections
journal, January 2008

  • Chai, Jeng-Da; Head-Gordon, Martin
  • Physical Chemistry Chemical Physics, Vol. 10, Issue 44
  • DOI: 10.1039/b810189b

ω B97M-V: A combinatorially optimized, range-separated hybrid, meta-GGA density functional with VV10 nonlocal correlation
journal, June 2016

  • Mardirossian, Narbe; Head-Gordon, Martin
  • The Journal of Chemical Physics, Vol. 144, Issue 21
  • DOI: 10.1063/1.4952647

Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: Design and assessment of accuracy
journal, January 2005

  • Weigend, Florian; Ahlrichs, Reinhart
  • Physical Chemistry Chemical Physics, Vol. 7, Issue 18, p. 3297-3305
  • DOI: 10.1039/b508541a

Thirty years of density functional theory in computational chemistry: an overview and extensive assessment of 200 density functionals
journal, April 2017


Assessment of DFT Methods for Transition Metals with the TMC151 Compilation of Data Sets and Comparison with Accuracies for Main-Group Chemistry
journal, April 2019

  • Chan, Bun; Gill, Peter M. W.; Kimura, Masanari
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 6
  • DOI: 10.1021/acs.jctc.9b00239

Semiempirical GGA-type density functional constructed with a long-range dispersion correction
journal, January 2006

  • Grimme, Stefan
  • Journal of Computational Chemistry, Vol. 27, Issue 15, p. 1787-1799
  • DOI: 10.1002/jcc.20495

Density-functional exchange-energy approximation with correct asymptotic behavior
journal, September 1988


Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density
journal, January 1988


Density‐functional thermochemistry. III. The role of exact exchange
journal, April 1993

  • Becke, Axel D.
  • The Journal of Chemical Physics, Vol. 98, Issue 7, p. 5648-5652
  • DOI: 10.1063/1.464913

A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu
journal, April 2010

  • Grimme, Stefan; Antony, Jens; Ehrlich, Stephan
  • The Journal of Chemical Physics, Vol. 132, Issue 15
  • DOI: 10.1063/1.3382344

The ORCA program system: The ORCA program system
journal, June 2011

  • Neese, Frank
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 2, Issue 1
  • DOI: 10.1002/wcms.81

Optimized accurate auxiliary basis sets for RI-MP2 and RI-CC2 calculations for the atoms Rb to Rn
journal, January 2007

  • Hellweg, Arnim; Hättig, Christof; Höfener, Sebastian
  • Theoretical Chemistry Accounts, Vol. 117, Issue 4
  • DOI: 10.1007/s00214-007-0250-5

Single-Ion Solvation Free Energies and the Normal Hydrogen Electrode Potential in Methanol, Acetonitrile, and Dimethyl Sulfoxide
journal, January 2007

  • Kelly, Casey P.; Cramer, Christopher J.; Truhlar, Donald G.
  • The Journal of Physical Chemistry B, Vol. 111, Issue 2
  • DOI: 10.1021/jp065403l

Reduction of Systematic Uncertainty in DFT Redox Potentials of Transition-Metal Complexes
journal, March 2012

  • Konezny, Steven J.; Doherty, Mark D.; Luca, Oana R.
  • The Journal of Physical Chemistry C, Vol. 116, Issue 10
  • DOI: 10.1021/jp300485t

Accurate p K a Calculations for Carboxylic Acids Using Complete Basis Set and Gaussian-n Models Combined with CPCM Continuum Solvation Methods
journal, August 2001

  • Liptak, Matthew D.; Shields, George C.
  • Journal of the American Chemical Society, Vol. 123, Issue 30
  • DOI: 10.1021/ja010534f

A Computational Study of the Mechanism of Hydrogen Evolution by Cobalt(Diimine-Dioxime) Catalysts
journal, September 2013

  • Bhattacharjee, Anirban; Andreiadis, Eugen S.; Chavarot-Kerlidou, Murielle
  • Chemistry - A European Journal, Vol. 19, Issue 45
  • DOI: 10.1002/chem.201301860

Acidities of strong neutral Brønsted acids in different media: ACIDITIES OF STRONG NEUTRAL BRØNSTED ACIDS
journal, May 2012

  • Raamat, Elin; Kaupmees, Karl; Ovsjannikov, Gea
  • Journal of Physical Organic Chemistry, Vol. 26, Issue 2
  • DOI: 10.1002/poc.2946

Quantum-Chemical Predictions of Absolute Standard Redox Potentials of Diverse Organic Molecules and Free Radicals in Acetonitrile
journal, May 2005

  • Fu, Yao; Liu, Lei; Yu, Hai-Zhu
  • Journal of the American Chemical Society, Vol. 127, Issue 19
  • DOI: 10.1021/ja0421856

Calculation of One-Electron Redox Potentials Revisited. Is It Possible to Calculate Accurate Potentials with Density Functional Methods?
journal, June 2009

  • Roy, Lindsay E.; Jakubikova, Elena; Guthrie, M. Graham
  • The Journal of Physical Chemistry A, Vol. 113, Issue 24
  • DOI: 10.1021/jp811388w

Theoretical Studies on the Redox Potentials of Fe Dinuclear Complexes as Models for Hydrogenase
journal, October 2008

  • Roy, Lindsay E.; Batista, Enrique R.; Hay, P. Jeffrey
  • Inorganic Chemistry, Vol. 47, Issue 20
  • DOI: 10.1021/ic800541w

Catalytic hydrogen production by a Ni–Ru mimic of NiFe hydrogenases involves a proton-coupled electron transfer step
journal, January 2013

  • Canaguier, Sigolène; Fourmond, Vincent; Perotto, Carlo U.
  • Chemical Communications, Vol. 49, Issue 44
  • DOI: 10.1039/c3cc40987b

Assertion and validation of the performance of the B3LYP⋆ functional for the first transition metal row and the G2 test set
journal, September 2002

  • Salomon, Oliver; Reiher, Markus; Hess, Bernd Artur
  • The Journal of Chemical Physics, Vol. 117, Issue 10
  • DOI: 10.1063/1.1493179

Accurate Spin-State Energies for Iron Complexes
journal, November 2008

  • Swart, Marcel
  • Journal of Chemical Theory and Computation, Vol. 4, Issue 12
  • DOI: 10.1021/ct800277a

Towards quantifying the role of exact exchange in predictions of transition metal complex properties
journal, July 2015

  • Ioannidis, Efthymios I.; Kulik, Heather J.
  • The Journal of Chemical Physics, Vol. 143, Issue 3
  • DOI: 10.1063/1.4926836

Theoretical Study of Spin Crossover in 30 Iron Complexes
journal, February 2016


Assessment of density functional theory for iron(II) molecules across the spin-crossover transition
journal, September 2012

  • Droghetti, A.; Alfè, D.; Sanvito, S.
  • The Journal of Chemical Physics, Vol. 137, Issue 12
  • DOI: 10.1063/1.4752411

Assessment of electronic structure methods for the determination of the ground spin states of Fe( ii ), Fe( iii ) and Fe( iv ) complexes
journal, January 2017

  • Verma, Pragya; Varga, Zoltan; Klein, Johannes E. M. N.
  • Physical Chemistry Chemical Physics, Vol. 19, Issue 20
  • DOI: 10.1039/C7CP01263B

2 -Acetonitrile)bis(η 5 -cyclopentadienyl)molybdenum( II ):the first structurally characterized complex containing an η 2 -nitrile ligand
journal, January 1986

  • Wright, Thomas C.; Wilkinson, Geoffrey; Motevalli, Majid
  • J. Chem. Soc., Dalton Trans., Issue 9
  • DOI: 10.1039/DT9860002017

Crystal structure of an .eta.2-acetonitrile complex of tungsten(II): acetonitrile as a four-electron donor
journal, October 1991

  • Barrera, Joseph; Sabat, Michal; Harman, W. Dean
  • Journal of the American Chemical Society, Vol. 113, Issue 21
  • DOI: 10.1021/ja00021a060

Reversible Cleavage of Carbon−Carbon Bonds in Benzonitrile Using Nickel(0)
journal, December 2000

  • Garcia, Juventino J.; Jones, William D.
  • Organometallics, Vol. 19, Issue 26
  • DOI: 10.1021/om0008474

Alkyne and Nitrile as η 2 (3e) Ligands in [Tris(pyrazolyl)borato]niobium(I) Complexes. Synthesis, Structure, and Coupling Reaction
journal, January 1996

  • Lorente, Philippe; Carfagna, Carla; Etienne, Michel
  • Organometallics, Vol. 15, Issue 4
  • DOI: 10.1021/om9508952

How Innocent are Potentially Redox Non-Innocent Ligands? Electronic Structure and Metal Oxidation States in Iron-PNN Complexes as a Representative Case Study
journal, April 2015


On the Innocence of Bipyridine Ligands: How Well Do DFT Functionals Fare for These Challenging Spin Systems?
journal, November 2013

  • Milko, Petr; Iron, Mark A.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 1
  • DOI: 10.1021/ct400913z

Entangled Electrons Foil Synthesis of Elusive Low-Valent Vanadium Oxo Complex
journal, January 2016

  • Schlimgen, Anthony W.; Heaps, Charles W.; Mazziotti, David A.
  • The Journal of Physical Chemistry Letters, Vol. 7, Issue 4
  • DOI: 10.1021/acs.jpclett.5b02547

Multireference Electronic Structures of Fe–Pyridine(diimine) Complexes over Multiple Oxidation States
journal, July 2017

  • Ortuño, Manuel A.; Cramer, Christopher J.
  • The Journal of Physical Chemistry A, Vol. 121, Issue 31
  • DOI: 10.1021/acs.jpca.7b06032

Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals
journal, August 2017

  • Sayfutyarova, Elvira R.; Sun, Qiming; Chan, Garnet Kin-Lic
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 9
  • DOI: 10.1021/acs.jctc.7b00128

Active Space Selection Based on Natural Orbital Occupation Numbers from n -Electron Valence Perturbation Theory
journal, April 2019

  • Khedkar, Abhishek; Roemelt, Michael
  • Journal of Chemical Theory and Computation, Vol. 15, Issue 6
  • DOI: 10.1021/acs.jctc.8b01293

Automated Selection of Active Orbital Spaces
journal, March 2016

  • Stein, Christopher J.; Reiher, Markus
  • Journal of Chemical Theory and Computation, Vol. 12, Issue 4
  • DOI: 10.1021/acs.jctc.6b00156

Automated Identification of Relevant Frontier Orbitals for Chemical Compounds and Processes
journal, April 2017

  • Stein, ChristopherJ.; Reiher, Markus
  • CHIMIA International Journal for Chemistry, Vol. 71, Issue 4
  • DOI: 10.2533/chimia.2017.170

autoCAS : A Program for Fully Automated Multiconfigurational Calculations
journal, June 2019

  • Stein, Christopher J.; Reiher, Markus
  • Journal of Computational Chemistry
  • DOI: 10.1002/jcc.25869

A New Mode of Activation of CO2 by Metal-Ligand Cooperation with Reversible CC and MO Bond Formation at Ambient Temperature
journal, June 2012

  • Vogt, Matthias; Gargir, Moti; Iron, Mark A.
  • Chemistry - A European Journal, Vol. 18, Issue 30
  • DOI: 10.1002/chem.201201730

Reversible CO 2 binding triggered by metal–ligand cooperation in a rhenium( i ) PNP pincer-type complex and the reaction with dihydrogen
journal, January 2014

  • Vogt, Matthias; Nerush, Alexander; Diskin-Posner, Yael
  • Chem. Sci., Vol. 5, Issue 5
  • DOI: 10.1039/C4SC00130C

Transition Metal Frustrated Lewis Pairs
journal, October 2013

  • Flynn, Stephanie R.; Wass, Duncan F.
  • ACS Catalysis, Vol. 3, Issue 11
  • DOI: 10.1021/cs400754w

Efficient hydrogenation of organic carbonates, carbamates and formates indicates alternative routes to methanol based on CO2 and CO
journal, July 2011

  • Balaraman, Ekambaram; Gunanathan, Chidambaram; Zhang, Jing
  • Nature Chemistry, Vol. 3, Issue 8
  • DOI: 10.1038/nchem.1089

Reduction of CO 2 by Pyridine Monoimine Molybdenum Carbonyl Complexes: Cooperative Metal-Ligand Binding of CO 2
journal, April 2015

  • Sieh, Daniel; Lacy, David C.; Peters, Jonas C.
  • Chemistry - A European Journal, Vol. 21, Issue 23
  • DOI: 10.1002/chem.201500463