skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Preparations for a European R&D roadmap for an inertial fusion demo reactor

Abstract

A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. This paperr presents a brief overview of these activities, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [3]; ORCiD logo [4];  [4];  [4]; ORCiD logo [4];  [4];  [5];  [4];  [6];  [6];  [7];  [8];  [8];  [8];  [8]; ORCiD logo [8];  [8];  [8] more »;  [8];  [8];  [8];  [8]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [9]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [3] « less
  1. Univ. of Oxford (United Kingdom); Science and Technology Facilities Council (STFC), Didcot (United Kingdom). Central Laser Facility
  2. Univ. de Bordeaux (France)
  3. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  4. Univ. of Oxford (United Kingdom)
  5. Univ. of Oxford (United Kingdom); Mewburn Ellis LLP, London (United Kingdom)
  6. Science and Technology Facilities Council (STFC), Didcot (United Kingdom). Central Laser Facility
  7. Science and Technology Facilities Council (STFC), Didcot (United Kingdom). Central Laser Facility; Univ. of Strathclyde, Glasgow (United Kingdom)
  8. Atomic Weapons Establishment (AWE), Berkshire (United Kingdom)
  9. (Austin) [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); European Commission (EC); Engineering and Physical Sciences Research Council (EPSRC)
OSTI Identifier:
1735902
Report Number(s):
LA-UR-20-22605
Journal ID: ISSN 1364-503X
Grant/Contract Number:  
89233218CNA000001; AC52-06NA25396; 633053; EP/L000237/11; EP/R029148/1
Resource Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 379; Journal Issue: 2189; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society Publishing
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; IFE Roadmap; fast ignition; inertial confinement fusion; auxiliary heating; inertial fusion energy; high-energy density plasma physics

Citation Formats

Norreys, P. A., Ceurvorst, L., Sadler, James David, Spiers, B. T., Aboushelbaya, R., Mayr, M. W., Paddock, R., Ratan, N., Savin, A. F., Wang, R. H. W., Glize, K., Trines, R. M. G. M., Bingham, R., Hill, M. P., Sircombe, N., Ramsay, M., Allan, P., Hobbs, L., James, S., Skidmore, J., Fyrth, J., Luis, J., Floyd, E., Brown, C., Haines, Brian Michael, Olson, Richard Edward, Yi, Sunghwan, Zylstra, Alex B., Flippo, Kirk Adler, Bradley, Paul Andrew, Peterson, Robert Ross, Kline, John L., and Leeper, Ramon J.. Preparations for a European R&D roadmap for an inertial fusion demo reactor. United States: N. p., 2020. Web. https://doi.org/10.1098/rsta.2020.0005.
Norreys, P. A., Ceurvorst, L., Sadler, James David, Spiers, B. T., Aboushelbaya, R., Mayr, M. W., Paddock, R., Ratan, N., Savin, A. F., Wang, R. H. W., Glize, K., Trines, R. M. G. M., Bingham, R., Hill, M. P., Sircombe, N., Ramsay, M., Allan, P., Hobbs, L., James, S., Skidmore, J., Fyrth, J., Luis, J., Floyd, E., Brown, C., Haines, Brian Michael, Olson, Richard Edward, Yi, Sunghwan, Zylstra, Alex B., Flippo, Kirk Adler, Bradley, Paul Andrew, Peterson, Robert Ross, Kline, John L., & Leeper, Ramon J.. Preparations for a European R&D roadmap for an inertial fusion demo reactor. United States. https://doi.org/10.1098/rsta.2020.0005
Norreys, P. A., Ceurvorst, L., Sadler, James David, Spiers, B. T., Aboushelbaya, R., Mayr, M. W., Paddock, R., Ratan, N., Savin, A. F., Wang, R. H. W., Glize, K., Trines, R. M. G. M., Bingham, R., Hill, M. P., Sircombe, N., Ramsay, M., Allan, P., Hobbs, L., James, S., Skidmore, J., Fyrth, J., Luis, J., Floyd, E., Brown, C., Haines, Brian Michael, Olson, Richard Edward, Yi, Sunghwan, Zylstra, Alex B., Flippo, Kirk Adler, Bradley, Paul Andrew, Peterson, Robert Ross, Kline, John L., and Leeper, Ramon J.. Mon . "Preparations for a European R&D roadmap for an inertial fusion demo reactor". United States. https://doi.org/10.1098/rsta.2020.0005. https://www.osti.gov/servlets/purl/1735902.
@article{osti_1735902,
title = {Preparations for a European R&D roadmap for an inertial fusion demo reactor},
author = {Norreys, P. A. and Ceurvorst, L. and Sadler, James David and Spiers, B. T. and Aboushelbaya, R. and Mayr, M. W. and Paddock, R. and Ratan, N. and Savin, A. F. and Wang, R. H. W. and Glize, K. and Trines, R. M. G. M. and Bingham, R. and Hill, M. P. and Sircombe, N. and Ramsay, M. and Allan, P. and Hobbs, L. and James, S. and Skidmore, J. and Fyrth, J. and Luis, J. and Floyd, E. and Brown, C. and Haines, Brian Michael and Olson, Richard Edward and Yi, Sunghwan and Zylstra, Alex B. and Flippo, Kirk Adler and Bradley, Paul Andrew and Peterson, Robert Ross and Kline, John L. and Leeper, Ramon J.},
abstractNote = {A European consortium of 15 laboratories across nine nations have worked together under the EUROFusion Enabling Research grants for the past decade with three principle objectives. These are: (a) investigating obstacles to ignition on megaJoule-class laser facilities; (b) investigating novel alternative approaches to ignition, including basic studies for fast ignition (both electron and ion-driven), auxiliary heating, shock ignition, etc.; and (c) developing technologies that will be required in the future for a fusion reactor. This paperr presents a brief overview of these activities, along with new calculations relates the concept of auxiliary heating of inertial fusion targets, and provides possible future directions of research and development for the updated European Roadmap that is due at the end of 2020. This article is part of a discussion meeting issue ‘Prospects for high gain inertial fusion energy (part 2)’.},
doi = {10.1098/rsta.2020.0005},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2189,
volume = 379,
place = {United States},
year = {2020},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Transport and spatial energy deposition of relativistic electrons in copper-doped fast ignition plasmas
journal, October 2017

  • Jarrott, L. C.; McGuffey, C.; Beg, F. N.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4999108

Adaptive inverse ray-tracing for accurate and efficient modeling of cross beam energy transfer in hydrodynamics simulations
journal, July 2019

  • Colaïtis, A.; Follett, R. K.; Palastro, J. P.
  • Physics of Plasmas, Vol. 26, Issue 7
  • DOI: 10.1063/1.5108777

Pulsed power indirect drive approach to inertial confinement fusion
journal, August 2020


Review of the National Ignition Campaign 2009-2012
journal, February 2014

  • Lindl, John; Landen, Otto; Edwards, John
  • Physics of Plasmas, Vol. 21, Issue 2
  • DOI: 10.1063/1.4865400

A Route to the Brightest Possible Neutron Source?
journal, February 2007


Fuel gain exceeding unity in an inertially confined fusion implosion
journal, February 2014

  • Hurricane, O. A.; Callahan, D. A.; Casey, D. T.
  • Nature, Vol. 506, Issue 7488
  • DOI: 10.1038/nature13008

First Liquid Layer Inertial Confinement Fusion Implosions at the National Ignition Facility
journal, December 2016


Crossed beam energy transfer between optically smoothed laser beams in inhomogeneous plasmas
journal, October 2020

  • Hüller, Stefan; Raj, Gaurav; Luo, Mufei
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378, Issue 2184
  • DOI: 10.1098/rsta.2020.0038

Whole-beam self-focusing in fusion-relevant plasma
journal, December 2020

  • Spiers, B. T.; Hill, M. P.; Brown, C.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379, Issue 2189
  • DOI: 10.1098/rsta.2020.0159

Implosion and burn of fast ignition capsules—Calculations with HYDRA
journal, September 2012

  • Shay, H. D.; Amendt, P.; Clark, D.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4751839

Fast heating scalable to laser fusion ignition
journal, August 2002

  • Kodama, R.; Shiraga, H.; Shigemori, K.
  • Nature, Vol. 418, Issue 6901
  • DOI: 10.1038/418933a

A self-similar isochoric implosion for fast ignition
journal, August 2007


Review of progress in Fast Ignition
journal, May 2005

  • Tabak, M.; Clark, D. S.; Hatchett, S. P.
  • Physics of Plasmas, Vol. 12, Issue 5
  • DOI: 10.1063/1.1871246

Fast heating of ultrahigh-density plasma as a step towards laser fusion ignition
journal, August 2001

  • Kodama, R.; Norreys, P. A.; Mima, K.
  • Nature, Vol. 412, Issue 6849
  • DOI: 10.1038/35090525

Mitigating the hosing instability in relativistic laser-plasma interactions
journal, May 2016


Simulations and experiments of the growth of the “tent” perturbation in NIF ignition implosions
journal, May 2016


Ignition and pusher adiabat
journal, June 2018

  • Cheng, B.; Kwan, T. J. T.; Wang, Y. M.
  • Plasma Physics and Controlled Fusion, Vol. 60, Issue 7
  • DOI: 10.1088/1361-6587/aac611

Reflectivity and spectral shift from laser plasmas generated by high-contrast, high-intensity KrF laser pulses
journal, October 2020

  • Kovács, Zs.; Bali, K.; Gilicze, B.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 378, Issue 2184
  • DOI: 10.1098/rsta.2020.0043

Alternative ignition schemes in inertial confinement fusion
journal, April 2014


Petawatt and exawatt class lasers worldwide
journal, January 2019

  • Danson, Colin N.; Haefner, Constantin; Bromage, Jake
  • High Power Laser Science and Engineering, Vol. 7
  • DOI: 10.1017/hpl.2019.36

Design of a High-Foot High-Adiabat ICF Capsule for the National Ignition Facility
journal, February 2014


Orion: a high contrast user facility
journal, March 2016


D 2 and D-T Liquid-Layer Target Shots at the National Ignition Facility
journal, January 2018


Azimuthal Drive Asymmetry in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2020


Impact of Localized Radiative Loss on Inertial Confinement Fusion Implosions
journal, April 2020


Thermonuclear ignition in inertial confinement fusion and comparison with magnetic confinement
journal, May 2010

  • Betti, R.; Chang, P. Y.; Spears, B. K.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3380857

Energy gain of laser-compressed pellets: a simple model calculation
journal, July 1976


Tent-induced perturbations on areal density of implosions at the National Ignition Facilitya)
journal, May 2015

  • Tommasini, R.; Field, J. E.; Hammel, B. A.
  • Physics of Plasmas, Vol. 22, Issue 5
  • DOI: 10.1063/1.4921218

Ignition and high gain with ultrapowerful lasers
journal, May 1994

  • Tabak, Max; Hammer, James; Glinsky, Michael E.
  • Physics of Plasmas, Vol. 1, Issue 5, p. 1626-1634
  • DOI: 10.1063/1.870664

Approaching a burning plasma on the NIF
journal, May 2019

  • Hurricane, O. A.; Springer, P. T.; Patel, P. K.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5087256

Visualizing fast electron energy transport into laser-compressed high-density fast-ignition targets
journal, January 2016

  • Jarrott, L. C.; Wei, M. S.; McGuffey, C.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3614

Channel optimization of high-intensity laser beams in millimeter-scale plasmas
journal, April 2018


Fusion Energy Output Greater than the Kinetic Energy of an Imploding Shell at the National Ignition Facility
journal, June 2018


Alternative hot spot formation techniques using liquid deuterium-tritium layer inertial confinement fusion capsules
journal, September 2013

  • Olson, R. E.; Leeper, R. J.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4822342

Kinetic simulations of fusion ignition with hot-spot ablator mix
journal, September 2019


The Physics of Inertial Fusion
book, January 2004


Fast-ignition transport studies: Realistic electron source, integrated particle-in-cell and hydrodynamic modeling, imposed magnetic fields
journal, July 2012

  • Strozzi, D. J.; Tabak, M.; Larson, D. J.
  • Physics of Plasmas, Vol. 19, Issue 7
  • DOI: 10.1063/1.4739294

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Optimization of plasma amplifiers
journal, May 2017


Supercritical Drying of Wet Gel Layers Generated Inside ICF Ablator Shells
journal, December 2017


Sources and space–time distribution of the electromagnetic pulses in experiments on inertial confinement fusion and laser–plasma acceleration
journal, December 2020

  • Consoli, F.; Andreoli, P. L.; Cipriani, M.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379, Issue 2189
  • DOI: 10.1098/rsta.2020.0022

Recent progress in quantifying hydrodynamics instabilities and turbulence in inertial confinement fusion and high-energy-density experiments
journal, December 2020

  • Casner, A.
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 379, Issue 2189
  • DOI: 10.1098/rsta.2020.0021

Direct-drive inertial confinement fusion: A review
journal, November 2015

  • Craxton, R. S.; Anderson, K. S.; Boehly, T. R.
  • Physics of Plasmas, Vol. 22, Issue 11
  • DOI: 10.1063/1.4934714

The physics basis for ignition using indirect-drive targets on the National Ignition Facility
journal, February 2004

  • Lindl, John D.; Amendt, Peter; Berger, Richard L.
  • Physics of Plasmas, Vol. 11, Issue 2
  • DOI: 10.1063/1.1578638

Advantages to a diverging Raman amplifier
journal, May 2018

  • Sadler, James D.; Silva, Luís O.; Fonseca, Ricardo A.
  • Communications Physics, Vol. 1, Issue 1
  • DOI: 10.1038/s42005-018-0021-8

Direct, Absolute, and In Situ Measurement of Fast Electron Transport via Cherenkov Emission
journal, February 2010


X-ray opacity measurements in mid-Z dense plasmas with a new target design of indirect heating
journal, December 2015


Quantitative shadowgraphy and proton radiography for large intensity modulations
journal, February 2017


High-resolution modeling of indirectly driven high-convergence layered inertial confinement fusion capsule implosions
journal, May 2017

  • Haines, Brian M.; Aldrich, C. H.; Campbell, J. M.
  • Physics of Plasmas, Vol. 24, Issue 5
  • DOI: 10.1063/1.4981222

Three-dimensional modeling and hydrodynamic scaling of National Ignition Facility implosions
journal, May 2019

  • Clark, D. S.; Weber, C. R.; Milovich, J. L.
  • Physics of Plasmas, Vol. 26, Issue 5
  • DOI: 10.1063/1.5091449

White-Light Parametric Instabilities in Plasmas
journal, June 2007