DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample

Abstract

Analyses of Type Ia supernovae (SNe Ia) have found puzzling correlations between their standardized luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey 3-yr spectroscopically confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. Here, we study the differences in these host galaxy properties, such as stellar mass and rest-frame U – R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ~0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U – R steps are small, both ~0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples basedmore » on SN Ia light-curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U – R, for both local and global measurements, of ~0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U – R rms scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U – R environments.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [2];  [4]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [7]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [5];  [8]; ORCiD logo [9];  [10];  [11];  [12];  [13]; ORCiD logo [6];  [14];  [15] more »;  [16];  [16];  [17];  [6];  [18];  [19];  [20];  [21];  [22];  [23];  [24];  [25];  [26];  [27];  [16];  [19];  [28];  [29];  [30];  [16];  [24];  [17];  [31];  [32];  [22];  [26];  [16];  [28];  [33];  [34]; ORCiD logo [35];  [36];  [16];  [19];  [15];  [37];  [38];  [22];  [39];  [40];  [26];  [41];  [42];  [43];  [44];  [11];  [45];  [24];  [45];  [46];  [47];  [6];  [48];  [49];  [14];  [44] « less
  1. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK;DISCnet Centre for Doctoral Training, University of Southampton, Southampton SO17 1BJ, UK
  2. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  3. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK;Université de Lyon, Université de Lyon 1, Villeurbanne; CNRS/IN2P3, Institut de Physique des Deux Infinis, F-69622 Lyon, France
  4. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA;Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  5. School of Mathematics and Physics, University of Queensland, Brisbane, QLD 4072, Australia
  6. Institute of Cosmology and Gravitation, University of Portsmouth, Portsmouth PO1 3FX, UK
  7. Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain
  8. Department of Astronomy and Astrophysics, University of Chicago, Chicago, IL 60637, USA;Kavli Institute for Cosmological Physics, University of Chicago, Chicago, IL 60637, USA
  9. Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra, ACT 2601, Australia;The Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601, Australia
  10. Université Clermont Auvergne, CNRS/IN2P3, LPC, F-63000 Clermont-Ferrand, France
  11. Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, PA 19104, USA
  12. Department of Physics, Duke University Durham, Durham, NC 27708, USA
  13. McDonald Observatory, The University of Texas at Austin, Fort Davis, TX 79734, USA
  14. Cerro Tololo Inter-American Observatory, NSF’s National Optical-Infrared Astronomy Research Laboratory, Casilla 603 La Serena, Chile
  15. Departamento de Física Matemática, Instituto de Física, Universidade de São Paulo, CP 66318, São Paulo, SP, 05314-970, Brazil;Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil
  16. Fermi National Accelerator Laboratory, PO Box 500, Batavia, IL 60510, USA
  17. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain
  18. CNRS, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France;Sorbonne Universités, UPMC Univ Paris 06, UMR 7095, Institut d’Astrophysique de Paris, F-75014 Paris, France
  19. Department of Physics & Astronomy, University College London, Gower Street, London WC1E 6BT, UK
  20. Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA;SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  21. Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife, Spain;Universidad de La Laguna, Dpto. Astrofísica, E-38206 La Laguna, Tenerife, Spain
  22. Department of Astronomy, University of Illinois at Urbana-Champaign, 1002 W. Green Street, Urbana, IL 61801, USA;National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  23. Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Barcelona, Spain
  24. Institut d’Estudis Espacials de Catalunya (IEEC), E-08034 Barcelona, Spain;Institute of Space Sciences (ICE, CSIC), Campus UAB, Carrer de Can Magrans, s/n, E-08193 Barcelona, Spain
  25. INAF – Osservatorio Astronomico di Trieste, via G. B. Tiepolo 11, I-34143 Trieste, Italy;Institute for Fundamental Physics of the Universe, Via Beirut 2, I-34014 Trieste, Italy
  26. Laboratório Interinstitucional de e-Astronomia - LIneA, Rua Gal. José Cristino 77, Rio de Janeiro RJ-20921-400, Brazil;Observatório Nacional, Rua Gal. José Cristino 77, Rio de Janeiro RJ - 20921-400, Brazil
  27. Department of Physics, IIT Hyderabad, Kandi 502285, India
  28. Santa Cruz Institute for Particle Physics, Santa Cruz, CA 95064, USA
  29. Institute of Theoretical Astrophysics, University of Oslo. P.O. Box 1029 Blindern, NO-0315 Oslo, Norway
  30. Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Dr., Pasadena, CA 91109, USA
  31. Department of Astronomy, University of Michigan, Ann Arbor, MI 48109, USA;Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  32. Department of Physics, Stanford University, 382 Via Pueblo Mall, Stanford, CA 94305, USA;Kavli Institute for Particle Astrophysics & Cosmology, PO Box 2450, Stanford University, Stanford, CA 94305, USA;SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
  33. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA;Department of Physics, The Ohio State University, Columbus, OH 43210, USA
  34. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138, USA
  35. Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
  36. Australian Astronomical Optics, Macquarie University, North Ryde, NSW 2113, Australia;Lowell Observatory, 1400 Mars Hill Rd, Flagstaff, AZ 86001, USA
  37. George P. and Cynthia Woods Mitchell Institute for Fundamental Physics and Astronomy, and Department of Physics and Astronomy, Texas A&M University, College Station, TX 77843, USA
  38. Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA;Department of Astronomy, The Ohio State University, Columbus, OH 43210, USA;Radcliffe Institute for Advanced Study, Harvard University, Cambridge, MA 02138, USA
  39. Institució Catalana de Recerca i Estudis Avançats, E-08010 Barcelona, Spain;Institut de Física d’Altes Energies (IFAE), The Barcelona Institute of Science and Technology, Campus UAB, E-08193 Barcelona, Spain
  40. Physics Department, 2320 Chamberlin Hall, University of Wisconsin-Madison, 1150 University Avenue Madison, WI 53706-1390, USA
  41. Instituto de Fisica Teorica UAM/CSIC, Universidad Autonoma de Madrid, E-28049 Madrid, Spain;Centre for Gravitational Astrophysics, College of Science, The Australian National University, Canberra, ACT 2601, Australia
  42. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK;National Center for Supercomputing Applications, 1205 West Clark St., Urbana, IL 61801, USA
  43. Department of Astrophysical Sciences, Princeton University, Peyton Hall, Princeton, NJ 08544, USA
  44. Department of Physics and Astronomy, Pevensey Building, University of Sussex, Brighton, BN1 9QH, UK
  45. Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Av. Complutense 40, E-28040, Madrid, Spain
  46. Computer Science and Mathematics Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
  47. Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
  48. SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA;Instituto de Astrofisica de Canarias, E-38205 La Laguna, Tenerife, Spain;Center for Cosmology and Astro-Particle Physics, The Ohio State University, Columbus, OH 43210, USA
  49. Max Planck Institute for Extraterrestrial Physics, Giessenbachstrasse, D-85748 Garching, Germany;Universitäts-Sternwarte, Fakultät für Physik, Ludwig-Maximilians Universität München, Scheinerstr. 1, D-81679 München, Germany
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States). Applied Physics Program; Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States); Fermi National Accelerator Laboratory (FNAL), Batavia, IL (United States); Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); SLAC National Accelerator Laboratory (SLAC), Menlo Park, CA (United States); Univ. of Chicago, IL (United States)
Sponsoring Org.:
USDOE Office of Science (SC), High Energy Physics (HEP); USDOE Office of Science (SC), Basic Energy Sciences (BES)
Contributing Org.:
DES Collaboration
OSTI Identifier:
1872384
Alternate Identifier(s):
OSTI ID: 1674993; OSTI ID: 1734756; OSTI ID: 1781656; OSTI ID: 1817471
Report Number(s):
FERMILAB-PUB-20-429-AE; DES-2019-0490; arXiv:2008.12101
Journal ID: ISSN 0035-8711; ST/P006760/1; ST/R000506/1; TRN: US2306876
Grant/Contract Number:  
SC0019193; AC02-07CH11359; SC0009924; AC05-00OR22725; AC02-76SF00515; ST/R000506/1; ST/P006760/1
Resource Type:
Accepted Manuscript
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Volume: 501; Journal Issue: 4; Journal ID: ISSN 0035-8711
Publisher:
Royal Astronomical Society
Country of Publication:
United States
Language:
English
Subject:
79 ASTRONOMY AND ASTROPHYSICS; cosmology: observations; distance scale; supernovae: general; surveys

Citation Formats

Kelsey, L., Sullivan, M., Smith, M., Wiseman, P., Brout, D., Davis, T. M., Frohmaier, C., Galbany, L., Grayling, M., Gutiérrez, C. P., Hinton, S. R., Kessler, R., Lidman, C., Möller, A., Sako, M., Scolnic, D., Uddin, S. A., Vincenzi, M., Abbott, T. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel, R., Morgan, R., Ogando, R. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sánchez, C., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Walker, A. R., and Wilkinson, R. D. The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample. United States: N. p., 2020. Web. doi:10.1093/mnras/staa3924.
Kelsey, L., Sullivan, M., Smith, M., Wiseman, P., Brout, D., Davis, T. M., Frohmaier, C., Galbany, L., Grayling, M., Gutiérrez, C. P., Hinton, S. R., Kessler, R., Lidman, C., Möller, A., Sako, M., Scolnic, D., Uddin, S. A., Vincenzi, M., Abbott, T. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel, R., Morgan, R., Ogando, R. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sánchez, C., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Walker, A. R., & Wilkinson, R. D. The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample. United States. https://doi.org/10.1093/mnras/staa3924
Kelsey, L., Sullivan, M., Smith, M., Wiseman, P., Brout, D., Davis, T. M., Frohmaier, C., Galbany, L., Grayling, M., Gutiérrez, C. P., Hinton, S. R., Kessler, R., Lidman, C., Möller, A., Sako, M., Scolnic, D., Uddin, S. A., Vincenzi, M., Abbott, T. C., Aguena, M., Allam, S., Annis, J., Avila, S., Bacon, D., Bertin, E., Brooks, D., Burke, D. L., Carnero Rosell, A., Carrasco Kind, M., Carretero, J., Castander, F. J., Costanzi, M., da Costa, L. N., Desai, S., Diehl, H. T., Doel, P., Everett, S., Ferrero, I., Ferté, A., Flaugher, B., Fosalba, P., García-Bellido, J., Gerdes, D. W., Gruen, D., Gruendl, R. A., Gschwend, J., Gutierrez, G., Hollowood, D. L., Honscheid, K., James, D. J., Kim, A. G., Kuehn, K., Kuropatkin, N., Lahav, O., Lima, M., Marshall, J. L., Martini, P., Menanteau, F., Miquel, R., Morgan, R., Ogando, R. C., Palmese, A., Paz-Chinchón, F., Plazas, A. A., Romer, A. K., Sánchez, C., Sanchez, E., Serrano, S., Sevilla-Noarbe, I., Suchyta, E., Tarle, G., Thomas, D., To, C., Varga, T. N., Walker, A. R., and Wilkinson, R. D. Mon . "The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample". United States. https://doi.org/10.1093/mnras/staa3924. https://www.osti.gov/servlets/purl/1872384.
@article{osti_1872384,
title = {The effect of environment on Type Ia supernovae in the Dark Energy Survey three-year cosmological sample},
author = {Kelsey, L. and Sullivan, M. and Smith, M. and Wiseman, P. and Brout, D. and Davis, T. M. and Frohmaier, C. and Galbany, L. and Grayling, M. and Gutiérrez, C. P. and Hinton, S. R. and Kessler, R. and Lidman, C. and Möller, A. and Sako, M. and Scolnic, D. and Uddin, S. A. and Vincenzi, M. and Abbott, T. C. and Aguena, M. and Allam, S. and Annis, J. and Avila, S. and Bacon, D. and Bertin, E. and Brooks, D. and Burke, D. L. and Carnero Rosell, A. and Carrasco Kind, M. and Carretero, J. and Castander, F. J. and Costanzi, M. and da Costa, L. N. and Desai, S. and Diehl, H. T. and Doel, P. and Everett, S. and Ferrero, I. and Ferté, A. and Flaugher, B. and Fosalba, P. and García-Bellido, J. and Gerdes, D. W. and Gruen, D. and Gruendl, R. A. and Gschwend, J. and Gutierrez, G. and Hollowood, D. L. and Honscheid, K. and James, D. J. and Kim, A. G. and Kuehn, K. and Kuropatkin, N. and Lahav, O. and Lima, M. and Marshall, J. L. and Martini, P. and Menanteau, F. and Miquel, R. and Morgan, R. and Ogando, R. C. and Palmese, A. and Paz-Chinchón, F. and Plazas, A. A. and Romer, A. K. and Sánchez, C. and Sanchez, E. and Serrano, S. and Sevilla-Noarbe, I. and Suchyta, E. and Tarle, G. and Thomas, D. and To, C. and Varga, T. N. and Walker, A. R. and Wilkinson, R. D.},
abstractNote = {Analyses of Type Ia supernovae (SNe Ia) have found puzzling correlations between their standardized luminosities and host galaxy properties: SNe Ia in high-mass, passive hosts appear brighter than those in lower mass, star-forming hosts. We examine the host galaxies of SNe Ia in the Dark Energy Survey 3-yr spectroscopically confirmed cosmological sample, obtaining photometry in a series of ‘local’ apertures centred on the SN, and for the global host galaxy. Here, we study the differences in these host galaxy properties, such as stellar mass and rest-frame U – R colours, and their correlations with SN Ia parameters including Hubble residuals. We find all Hubble residual steps to be >3σ in significance, both for splitting at the traditional environmental property sample median and for the step of maximum significance. For stellar mass, we find a maximal local step of 0.098 ± 0.018 mag; ~0.03 mag greater than the largest global stellar mass step in our sample (0.070 ± 0.017 mag). When splitting at the sample median, differences between local and global U – R steps are small, both ~0.08 mag, but are more significant than the global stellar mass step (0.057 ± 0.017 mag). We split the data into sub-samples based on SN Ia light-curve parameters: stretch (x1) and colour (c), finding that redder objects (c > 0) have larger Hubble residual steps, for both stellar mass and U – R, for both local and global measurements, of ~0.14 mag. Additionally, the bluer (star-forming) local environments host a more homogeneous SN Ia sample, with local U – R rms scatter as low as 0.084 ± 0.017 mag for blue (c < 0) SNe Ia in locally blue U – R environments.},
doi = {10.1093/mnras/staa3924},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 4,
volume = 501,
place = {United States},
year = {Mon Dec 21 00:00:00 EST 2020},
month = {Mon Dec 21 00:00:00 EST 2020}
}

Works referenced in this record:

The Foundation Supernova Survey: motivation, design, implementation, and first data release
journal, December 2017

  • Foley, Ryan J.; Scolnic, Daniel; Rest, Armin
  • Monthly Notices of the Royal Astronomical Society, Vol. 475, Issue 1
  • DOI: 10.1093/mnras/stx3136

The Astropy Project: Building an Open-science Project and Status of the v2.0 Core Package
journal, August 2018

  • Price-Whelan, A. M.; Sipőcz, B. M.; Günther, H. M.
  • The Astronomical Journal, Vol. 156, Issue 3
  • DOI: 10.3847/1538-3881/aabc4f

Dependence of Type Ia supernova luminosities on their local environment
journal, July 2018


SExtractor: Software for source extraction
journal, June 1996

  • Bertin, E.; Arnouts, S.
  • Astronomy and Astrophysics Supplement Series, Vol. 117, Issue 2
  • DOI: 10.1051/aas:1996164

Should Type Ia Supernova Distances Be Corrected for Their Local Environments?
journal, November 2018


Secondary standard stars for absolute spectrophotometry
journal, March 1983

  • Oke, J. B.; Gunn, J. E.
  • The Astrophysical Journal, Vol. 266
  • DOI: 10.1086/160817

Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds
journal, June 1998

  • Schlegel, David J.; Finkbeiner, Douglas P.; Davis, Marc
  • The Astrophysical Journal, Vol. 500, Issue 2
  • DOI: 10.1086/305772

First Cosmology Results using Supernovae Ia from the Dark Energy Survey: Survey Overview, Performance, and Supernova Spectroscopy
journal, November 2020


The Observed Relation Between Stellar Mass, dust Extinction, and star Formation rate in Local Galaxies
journal, January 2013


Is the metallicity of their host galaxies a good measure of the metallicity of Type Ia supernovae?: Metallicity of SNIa and their host galaxies
journal, March 2011


Observational Clues to the Progenitors of Type Ia Supernovae
journal, August 2014


On the environments of Type Ia supernovae within host galaxies
journal, February 2015

  • Anderson, J. P.; James, P. A.; Förster, F.
  • Monthly Notices of the Royal Astronomical Society, Vol. 448, Issue 1
  • DOI: 10.1093/mnras/stu2712

METALLICITY AS A SOURCE OF DISPERSION IN THE SNIa BOLOMETRIC LIGHT CURVE LUMINOSITY-WIDTH RELATIONSHIP
journal, February 2010


Environmental Dependence of Type Ia Supernova Luminosities from a Sample without a Local–Global Difference in Host Star Formation
journal, February 2018

  • Kim, Young-Lo; Smith, Mathew; Sullivan, Mark
  • The Astrophysical Journal, Vol. 854, Issue 1
  • DOI: 10.3847/1538-4357/aaa127

Predicting dust extinction from the stellar mass of a galaxy: Dust extinction and stellar mass
journal, September 2010


HUBBLE RESIDUALS OF NEARBY TYPE Ia SUPERNOVAE ARE CORRELATED WITH HOST GALAXY MASSES
journal, May 2010


Environmental Dependence of Type IA Supernova Luminosities from the Yonsei Supernova Catalog
journal, January 2019

  • Kim, Young-Lo; Kang, Yijung; Lee, Young-Wook
  • Journal of The Korean Astronomical Society, Vol. 52, Issue 5, p. 181-205
  • DOI: 10.5303/JKAS.2019.52.5.181

The Influence of Host Galaxies in Type Ia Supernova Cosmology
journal, October 2017

  • Uddin, Syed A.; Mould, Jeremy; Lidman, Chris
  • The Astrophysical Journal, Vol. 848, Issue 1
  • DOI: 10.3847/1538-4357/aa8df7

First cosmology results using Type Ia supernova from the Dark Energy Survey: simulations to correct supernova distance biases
journal, February 2019

  • Kessler, R.; Brout, D.; D’Andrea, C. B.
  • Monthly Notices of the Royal Astronomical Society, Vol. 485, Issue 1
  • DOI: 10.1093/mnras/stz463

The absolute magnitudes of Type IA supernovae
journal, August 1993

  • Phillips, M. M.
  • The Astrophysical Journal, Vol. 413
  • DOI: 10.1086/186970

IMPROVED CONSTRAINTS ON TYPE Ia SUPERNOVA HOST GALAXY PROPERTIES USING MULTI-WAVELENGTH PHOTOMETRY AND THEIR CORRELATIONS WITH SUPERNOVA PROPERTIES
journal, October 2011


First Cosmology Results Using Type Ia Supernovae from the Dark Energy Survey: Photometric Pipeline and Light-curve Data Release
journal, March 2019


The dark Energy Camera
journal, October 2015


It is not easy being green: the evolution of galaxy colour in the EAGLE simulation
journal, May 2016

  • Trayford, James W.; Theuns, Tom; Bower, Richard G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 4
  • DOI: 10.1093/mnras/stw1230

The Connection Between Galaxies and Their Dark Matter Halos
journal, September 2018


THE LOCAL HOSTS OF TYPE Ia SUPERNOVAE
journal, December 2009


The dependence of star formation history and internal structure on stellar mass for 10 5 low-redshift galaxies
journal, May 2003

  • Kauffmann, Guinevere; Heckman, Timothy M.; White, Simon D. M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 341, Issue 1
  • DOI: 10.1046/j.1365-8711.2003.06292.x

Strong dependence of Type Ia supernova standardization on the local specific star formation rate
journal, December 2020


Overview of the Nearby Supernova Factory
conference, December 2002

  • Aldering, Greg; Adam, G.; Antilogus, P.
  • Astronomical Telescopes and Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.458107

On Variations in the Peak Luminosity of Type Ia Supernovae
journal, May 2003

  • Timmes, F. X.; Brown, Edward F.; Truran, J. W.
  • The Astrophysical Journal, Vol. 590, Issue 2
  • DOI: 10.1086/376721

SNANA: A Public Software Package for Supernova Analysis
journal, September 2009

  • Kessler, Richard; Bernstein, Joseph P.; Cinabro, David
  • Publications of the Astronomical Society of the Pacific, Vol. 121, Issue 883
  • DOI: 10.1086/605984

CONFIRMATION OF A STAR FORMATION BIAS IN TYPE Ia SUPERNOVA DISTANCES AND ITS EFFECT ON THE MEASUREMENT OF THE HUBBLE CONSTANT
journal, March 2015


Observational Evidence from Supernovae for an Accelerating Universe and a Cosmological Constant
journal, September 1998

  • Riess, Adam G.; Filippenko, Alexei V.; Challis, Peter
  • The Astronomical Journal, Vol. 116, Issue 3
  • DOI: 10.1086/300499

Rates and Properties of Type Ia Supernovae as a Function of Mass and Star Formation in Their Host Galaxies
journal, September 2006

  • Sullivan, M.; Le Borgne, D.; Pritchet, C. J.
  • The Astrophysical Journal, Vol. 648, Issue 2
  • DOI: 10.1086/506137

Think Global, Act Local: The Influence of Environment Age and Host Mass on Type Ia Supernova Light Curves
journal, March 2019


The Dark Energy Survey: Data Release 1
journal, November 2018

  • Abbott, T. M. C.; Abdalla, F. B.; Allam, S.
  • The Astrophysical Journal Supplement Series, Vol. 239, Issue 2
  • DOI: 10.3847/1538-4365/aae9f0

The Dark Energy Survey Image Processing Pipeline
journal, May 2018

  • Morganson, E.; Gruendl, R. A.; Menanteau, F.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 989
  • DOI: 10.1088/1538-3873/aab4ef

K ‐Corrections and Spectral Templates of Type Ia Supernovae
journal, July 2007

  • Hsiao, E. Y.; Conley, A.; Howell, D. A.
  • The Astrophysical Journal, Vol. 663, Issue 2
  • DOI: 10.1086/518232

Supernova host galaxies in the dark energy survey: I. Deep coadds, photometry, and stellar masses
journal, May 2020

  • Wiseman, P.; Smith, M.; Childress, M.
  • Monthly Notices of the Royal Astronomical Society, Vol. 495, Issue 4
  • DOI: 10.1093/mnras/staa1302

Astropy: A community Python package for astronomy
journal, September 2013


The Dark Energy Survey: more than dark energy – an overview
journal, March 2016

  • Abbott, T.; Abdalla, F. B.; Aleksic, J.
  • Monthly Notices of the Royal Astronomical Society, Vol. 460, Issue 2, p. 1270-1299
  • DOI: 10.1093/mnras/stw641

The Supernova Legacy Survey: measurement of $\Omega_{\mathsf{M}}$, $\Omega_\mathsf{\Lambda}$ and w from the first year data set
journal, January 2006


Correcting for the Effects of Interstellar Extinction
journal, January 1999

  • Fitzpatrick, Edward L.
  • Publications of the Astronomical Society of the Pacific, Vol. 111, Issue 755
  • DOI: 10.1086/316293

Evidence of environmental dependencies of Type Ia supernovae from the Nearby Supernova Factory indicated by local H α
journal, December 2013


A Precise Distance Indicator: Type Ia Supernova Multicolor Light‐Curve Shapes
journal, December 1996

  • Riess, Adam G.; Press, William H.; Kirshner, Robert P.
  • The Astrophysical Journal, Vol. 473, Issue 1
  • DOI: 10.1086/178129

IMPROVED DARK ENERGY CONSTRAINTS FROM ∼100 NEW CfA SUPERNOVA TYPE Ia LIGHT CURVES
journal, July 2009


THE EFFECT OF PROGENITOR AGE AND METALLICITY ON LUMINOSITY AND 56 Ni YIELD IN TYPE Ia SUPERNOVAE
journal, January 2009


SiFTO: An Empirical Method for Fitting SN Ia Light Curves
journal, July 2008

  • Conley, A.; Sullivan, M.; Hsiao, E. Y.
  • The Astrophysical Journal, Vol. 681, Issue 1
  • DOI: 10.1086/588518

The case against the progenitor's carbon-to-oxygen ratio as a source of peak luminosity variations in type Ia supernovae
journal, May 2004


The Difference Imaging Pipeline for the Transient Search in the dark Energy Survey
journal, November 2015


First cosmology results using type Ia supernovae from the Dark Energy Survey: the effect of host galaxy properties on supernova luminosity
journal, April 2020

  • Smith, M.; Sullivan, M.; Wiseman, P.
  • Monthly Notices of the Royal Astronomical Society, Vol. 494, Issue 3
  • DOI: 10.1093/mnras/staa946

The Supernova Legacy Survey 3-year sample: Type Ia supernovae photometric distances and cosmological constraints
journal, November 2010


HOST GALAXY PROPERTIES AND HUBBLE RESIDUALS OF TYPE Ia SUPERNOVAE FROM THE NEARBY SUPERNOVA FACTORY
journal, May 2013


PÉGASE.3: A code for modeling the UV-to-IR/submm spectral and chemical evolution of galaxies with dust
journal, March 2019


First Cosmology Results Using SNe Ia from the Dark Energy Survey: Analysis, Systematic Uncertainties, and Validation
journal, April 2019


SN Ia host galaxy properties from Sloan Digital Sky Survey-II spectroscopy
journal, September 2013

  • Johansson, Jonas; Thomas, Daniel; Pforr, Janine
  • Monthly Notices of the Royal Astronomical Society, Vol. 435, Issue 2
  • DOI: 10.1093/mnras/stt1408

THE EFFECT OF HOST GALAXIES ON TYPE Ia SUPERNOVAE IN THE SDSS-II SUPERNOVA SURVEY
journal, September 2010


The dependence of Type Ia Supernovae luminosities on their host galaxies: SN Ia host galaxies
journal, May 2010


Star formation in simulated galaxies: understanding the transition to quiescence at 3 × 1010 M⊙
journal, May 2017

  • Taylor, Philip; Federrath, Christoph; Kobayashi, Chiaki
  • Monthly Notices of the Royal Astronomical Society, Vol. 469, Issue 4
  • DOI: 10.1093/mnras/stx1128

PISCO: The PMAS/PPak Integral-field Supernova Hosts Compilation
journal, March 2018

  • Galbany, L.; Anderson, J. P.; Sánchez, S. F.
  • The Astrophysical Journal, Vol. 855, Issue 2
  • DOI: 10.3847/1538-4357/aaaf20

On the variation of the initial mass function
journal, April 2001


RECONSIDERING THE EFFECTS OF LOCAL STAR FORMATION ON TYPE Ia SUPERNOVA COSMOLOGY
journal, October 2015

  • Jones, David O.; Riess, Adam G.; Scolnic, Daniel M.
  • The Astrophysical Journal, Vol. 812, Issue 1
  • DOI: 10.1088/0004-637X/812/1/31

SALT2: using distant supernovae to improve the use of type Ia supernovae as distance indicators
journal, February 2007


Snls3: Constraints on dark Energy Combining the Supernova Legacy Survey Three-Year data with Other Probes
journal, August 2011


The ages and metallicities of galaxies in the local universe
journal, September 2005

  • Gallazzi, Anna; Charlot, Stéphane; Brinchmann, Jarle
  • Monthly Notices of the Royal Astronomical Society, Vol. 362, Issue 1
  • DOI: 10.1111/j.1365-2966.2005.09321.x

Supernova Simulations and Strategies for the dark Energy Survey
journal, June 2012


Predicting fully self-consistent satellite richness, galaxy growth and starformation rates from the STastical sEmi-Empirical modeL steel.
journal, October 2019

  • Grylls, Philip J.; Shankar, F.; Leja, J.
  • Monthly Notices of the Royal Astronomical Society
  • DOI: 10.1093/mnras/stz2956

Measurements of Ω and Λ from 42 High‐Redshift Supernovae
journal, June 1999

  • Perlmutter, S.; Aldering, G.; Goldhaber, G.
  • The Astrophysical Journal, Vol. 517, Issue 2
  • DOI: 10.1086/307221

The diversity of type Ia supernovae from broken symmetries
journal, August 2009

  • Kasen, D.; Röpke, F. K.; Woosley, S. E.
  • Nature, Vol. 460, Issue 7257
  • DOI: 10.1038/nature08256

Ages of Type Ia supernovae over cosmic time
journal, October 2014

  • Childress, Michael J.; Wolf, Christian; Zahid, H. Jabran
  • Monthly Notices of the Royal Astronomical Society, Vol. 445, Issue 2
  • DOI: 10.1093/mnras/stu1892

The Origin of the Mass‐Metallicity Relation: Insights from 53,000 Star‐forming Galaxies in the Sloan Digital Sky Survey
journal, October 2004

  • Tremonti, Christy A.; Heckman, Timothy M.; Kauffmann, Guinevere
  • The Astrophysical Journal, Vol. 613, Issue 2
  • DOI: 10.1086/423264

The Carnegie Supernova Project-I: Correlation between Type Ia Supernovae and Their Host Galaxies from Optical to Near-infrared Bands
journal, October 2020

  • Uddin, Syed A.; Burns, Christopher R.; Phillips, M. M.
  • The Astrophysical Journal, Vol. 901, Issue 2
  • DOI: 10.3847/1538-4357/abafb7

Improved cosmological constraints from a joint analysis of the SDSS-II and SNLS supernova samples
journal, August 2014


Correcting Type Ia Supernova Distances for Selection Biases and Contamination in Photometrically Identified Samples
journal, February 2017


Galaxy Zoo: morphologies derived from visual inspection of galaxies from the Sloan Digital Sky Survey
journal, September 2008

  • Lintott, Chris J.; Schawinski, Kevin; Slosar, Anže
  • Monthly Notices of the Royal Astronomical Society, Vol. 389, Issue 3
  • DOI: 10.1111/j.1365-2966.2008.13689.x

The Data Release of the Sloan Digital Sky Survey-II Supernova Survey
journal, May 2018

  • Sako, Masao; Bassett, Bruce; Becker, Andrew C.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 988
  • DOI: 10.1088/1538-3873/aab4e0