skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform

Abstract

2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. In this work, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.

Authors:
ORCiD logo [1];  [2];  [3];  [2];  [4];  [2];  [2];  [2];  [2];  [2];  [5];  [6];  [2];  [2]; ORCiD logo [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States); Seoul National Univ. (Korea, Republic of)
  2. Seoul National Univ. (Korea, Republic of)
  3. Korea Inst. of Materials Science, Changwon (Korea, Republic of)
  4. Korea Basic Science Inst., Daejeon (Korea, Republic of )
  5. Kangwon National Univ., Samcheok (Korea, Republic of)
  6. Korea Univ. Seoul (Korea, Republic of)
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division; USDOE National Nuclear Security Administration (NNSA); National Research Foundation of Korea (NRF)
OSTI Identifier:
1734733
Alternate Identifier(s):
OSTI ID: 1804217
Report Number(s):
LA-UR-20-29018
Journal ID: ISSN 0935-9648
Grant/Contract Number:  
89233218CNA000001; 2017R1A2B3009135; 2016M3A7B4910; 9233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Materials
Additional Journal Information:
Journal Volume: 33; Journal Issue: 2; Journal ID: ISSN 0935-9648
Publisher:
Wiley
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Material Science; 2D materials, Graphene, Microscale patterning, Chemical sensor array, Finite element simulation

Citation Formats

Kim, Yeonhoo, Kim, Taehoon, Lee, Jinwoo, Choi, Yong Seok, Moon, Joonhee, Park, Seo Yun, Lee, Tae Hyung, Park, Hoon Kee, Lee, Sol A., Kwon, Min Sang, Byun, Hyung-Gi, Lee, Jong-Heun, Lee, Myoung-Gyu, Hong, Byung Hee, and Jang, Ho Won. Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform. United States: N. p., 2020. Web. https://doi.org/10.1002/adma.202004827.
Kim, Yeonhoo, Kim, Taehoon, Lee, Jinwoo, Choi, Yong Seok, Moon, Joonhee, Park, Seo Yun, Lee, Tae Hyung, Park, Hoon Kee, Lee, Sol A., Kwon, Min Sang, Byun, Hyung-Gi, Lee, Jong-Heun, Lee, Myoung-Gyu, Hong, Byung Hee, & Jang, Ho Won. Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform. United States. https://doi.org/10.1002/adma.202004827
Kim, Yeonhoo, Kim, Taehoon, Lee, Jinwoo, Choi, Yong Seok, Moon, Joonhee, Park, Seo Yun, Lee, Tae Hyung, Park, Hoon Kee, Lee, Sol A., Kwon, Min Sang, Byun, Hyung-Gi, Lee, Jong-Heun, Lee, Myoung-Gyu, Hong, Byung Hee, and Jang, Ho Won. Fri . "Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform". United States. https://doi.org/10.1002/adma.202004827. https://www.osti.gov/servlets/purl/1734733.
@article{osti_1734733,
title = {Tailored Graphene Micropatterns by Wafer-Scale Direct Transfer for Flexible Chemical Sensor Platform},
author = {Kim, Yeonhoo and Kim, Taehoon and Lee, Jinwoo and Choi, Yong Seok and Moon, Joonhee and Park, Seo Yun and Lee, Tae Hyung and Park, Hoon Kee and Lee, Sol A. and Kwon, Min Sang and Byun, Hyung-Gi and Lee, Jong-Heun and Lee, Myoung-Gyu and Hong, Byung Hee and Jang, Ho Won},
abstractNote = {2D materials, such as graphene, exhibit great potential as functional materials for numerous novel applications due to their excellent properties. The grafting of conventional micropatterning techniques on new types of electronic devices is required to fully utilize the unique nature of graphene. However, the conventional lithography and polymer-supported transfer methods often induce the contamination and damage of the graphene surface due to polymer residues and harsh wet-transfer conditions. In this work, a novel strategy to obtain micropatterned graphene on polymer substrates using a direct curing process is demonstrated. Employing this method, entirely flexible, transparent, well-defined self-activated graphene sensor arrays, capable of gas discrimination without external heating, are fabricated on 4 in. wafer-scale substrates. Finite element method simulations show the potential of this patterning technique to maximize the performance of the sensor devices when the active channels of the 2D material are suspended and nanoscaled. This study contributes considerably to the development of flexible functional electronic devices based on 2D materials.},
doi = {10.1002/adma.202004827},
journal = {Advanced Materials},
number = 2,
volume = 33,
place = {United States},
year = {2020},
month = {11}
}

Works referenced in this record:

High-Performance Graphene-Based Transparent Flexible Heaters
journal, December 2011

  • Kang, Junmo; Kim, Hyeongkeun; Kim, Keun Soo
  • Nano Letters, Vol. 11, Issue 12
  • DOI: 10.1021/nl202311v

Large-Scale Graphene Micropatterns via Self-Assembly-Mediated Process for Flexible Device Application
journal, January 2012

  • Kim, TaeYoung; Kim, Hyeongkeun; Kwon, Soon Woo
  • Nano Letters, Vol. 12, Issue 2
  • DOI: 10.1021/nl203691d

Self-Activated Transparent All-Graphene Gas Sensor with Endurance to Humidity and Mechanical Bending
journal, September 2015


Inkjet Printing of High Conductivity, Flexible Graphene Patterns
journal, March 2013

  • Secor, Ethan B.; Prabhumirashi, Pradyumna L.; Puntambekar, Kanan
  • The Journal of Physical Chemistry Letters, Vol. 4, Issue 8, p. 1347-1351
  • DOI: 10.1021/jz400644c

Micropatterning of Graphene Sheets by Inkjet Printing and Its Wideband Dipole-Antenna Application
journal, April 2011

  • Shin, Keun-Young; Hong, Jin-Yong; Jang, Jyongsik
  • Advanced Materials, Vol. 23, Issue 18
  • DOI: 10.1002/adma.201100345

The manufacture of a transparent film heater by spinning multi-walled carbon nanotubes
journal, January 2011


In-Plane Thermal Conductivity of Polycrystalline Chemical Vapor Deposition Graphene with Controlled Grain Sizes
journal, March 2017


Flexible graphene electrothermal films made from electrochemically exfoliated graphite
journal, September 2015


A colorimetric sensor array for odour visualization
journal, August 2000

  • Rakow, Neal A.; Suslick, Kenneth S.
  • Nature, Vol. 406, Issue 6797
  • DOI: 10.1038/35021028

Holey reduced graphene oxide nanosheets for high performance room temperature gas sensing
journal, January 2014

  • Wang, D. H.; Hu, Y.; Zhao, J. J.
  • J. Mater. Chem. A, Vol. 2, Issue 41
  • DOI: 10.1039/C4TA03740E

Transparent flexible heater based on hybrid of carbon nanotubes and silver nanowires
journal, November 2013


Transparent Film Heater Using Single-Walled Carbon Nanotubes
journal, December 2007


Novel Fabrication of Flexible Graphene-Based Chemical Sensors with Heaters using Soft Lithographic Patterning Method
journal, August 2014

  • Jung, Min Wook; Myung, Sung; Song, Wooseok
  • ACS Applied Materials & Interfaces, Vol. 6, Issue 16
  • DOI: 10.1021/am502281t

Graphene transfer: key for applications
journal, January 2012

  • Kang, Junmo; Shin, Dolly; Bae, Sukang
  • Nanoscale, Vol. 4, Issue 18
  • DOI: 10.1039/c2nr31317k

Graphene transfer with reduced residue
journal, September 2013


Graphene for displays that bend
journal, October 2014


Intrinsic Response of Graphene Vapor Sensors
journal, April 2009

  • Dan, Yaping; Lu, Ye; Kybert, Nicholas J.
  • Nano Letters, Vol. 9, Issue 4, p. 1472-1475
  • DOI: 10.1021/nl8033637

Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes
journal, February 2017

  • Zhang, Zhikun; Du, Jinhong; Zhang, Dingdong
  • Nature Communications, Vol. 8, Issue 1
  • DOI: 10.1038/ncomms14560

Precise gas discrimination with cross-reactive graphene and metal oxide sensor arrays
journal, November 2018

  • Shi, Chen; Ye, Huixian; Wang, Hui
  • Applied Physics Letters, Vol. 113, Issue 22
  • DOI: 10.1063/1.5063375

Raman spectroscopy as a versatile tool for studying the properties of graphene
journal, April 2013


Paraffin-enabled graphene transfer
journal, February 2019


Rapid Selective Etching of PMMA Residues from Transferred Graphene by Carbon Dioxide
journal, October 2013

  • Gong, Cheng; Floresca, Herman Carlo; Hinojos, David
  • The Journal of Physical Chemistry C, Vol. 117, Issue 44
  • DOI: 10.1021/jp408429v

Graphene-based surface heater for de-icing applications
journal, January 2018

  • Karim, Nazmul; Zhang, Minglonghai; Afroj, Shaila
  • RSC Advances, Vol. 8, Issue 30
  • DOI: 10.1039/C8RA02567C

Temperature-Dependent Electrical Properties of Graphene Inkjet-Printed on Flexible Materials
journal, September 2012


Real-Time DNA Detection Using Reduced Graphene Oxide Field Effect Transistors
journal, September 2010

  • Stine, Rory; Robinson, Jeremy T.; Sheehan, Paul E.
  • Advanced Materials, Vol. 22, Issue 46
  • DOI: 10.1002/adma.201002121

Roll-to-roll production of 30-inch graphene films for transparent electrodes
journal, June 2010

  • Bae, Sukang; Kim, Hyeongkeun; Lee, Youngbin
  • Nature Nanotechnology, Vol. 5, Issue 8, p. 574-578
  • DOI: 10.1038/nnano.2010.132

All-Organic Vapor Sensor Using Inkjet-Printed Reduced Graphene Oxide
journal, March 2010

  • Dua, Vineet; Surwade, Sumedh P.; Ammu, Srikanth
  • Angewandte Chemie International Edition, Vol. 49, Issue 12
  • DOI: 10.1002/anie.200905089

Chemoresistive materials for electronic nose: Progress, perspectives, and challenges
journal, August 2019

  • Park, Seo Yun; Kim, Yeonhoo; Kim, Taehoon
  • InfoMat, Vol. 1, Issue 3
  • DOI: 10.1002/inf2.12029

Gas Sensor Array Based on Metal-Decorated Carbon Nanotubes
journal, October 2006

  • Star, Alexander; Joshi, Vikram; Skarupo, Sergei
  • The Journal of Physical Chemistry B, Vol. 110, Issue 42
  • DOI: 10.1021/jp064371z

Chemically fluorinated graphene oxide for room temperature ammonia detection at ppb levels
journal, January 2017

  • Kim, Yeon Hoo; Park, Ji Soo; Choi, You-Rim
  • Journal of Materials Chemistry A, Vol. 5, Issue 36
  • DOI: 10.1039/C7TA05766K

Inkjet-Printed Graphene Electronics
journal, March 2012

  • Torrisi, Felice; Hasan, Tawfique; Wu, Weiping
  • ACS Nano, Vol. 6, Issue 4
  • DOI: 10.1021/nn2044609

Flexible and Transparent Electrothermal Film Heaters Based on Graphene Materials
journal, October 2011


Multiplexed electrical detection of cancer markers with nanowire sensor arrays
journal, September 2005

  • Zheng, Gengfeng; Patolsky, Fernando; Cui, Yi
  • Nature Biotechnology, Vol. 23, Issue 10, p. 1294-1301
  • DOI: 10.1038/nbt1138

Van der Waals heterostructures
journal, July 2013

  • Geim, A. K.; Grigorieva, I. V.
  • Nature, Vol. 499, Issue 7459, p. 419-425
  • DOI: 10.1038/nature12385

Scalable fabrication of high-power graphene micro-supercapacitors for flexible and on-chip energy storage
journal, February 2013

  • El-Kady, Maher F.; Kaner, Richard B.
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2446

Patterning and Electronic Tuning of Laser Scribed Graphene for Flexible All-Carbon Devices
journal, January 2012

  • Strong, Veronica; Dubin, Sergey; El-Kady, Maher F.
  • ACS Nano, Vol. 6, Issue 2
  • DOI: 10.1021/nn204200w

Graphene Annealing: How Clean Can It Be?
journal, December 2011

  • Lin, Yung-Chang; Lu, Chun-Chieh; Yeh, Chao-Huei
  • Nano Letters, Vol. 12, Issue 1, p. 414-419
  • DOI: 10.1021/nl203733r

Effect of grain boundaries on thermal transport in graphene
journal, January 2013

  • Serov, Andrey Y.; Ong, Zhun-Yong; Pop, Eric
  • Applied Physics Letters, Vol. 102, Issue 3
  • DOI: 10.1063/1.4776667

The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO 2
journal, September 2011

  • Pirkle, A.; Chan, J.; Venugopal, A.
  • Applied Physics Letters, Vol. 99, Issue 12
  • DOI: 10.1063/1.3643444

Surface morphology and raman analysis of the polyimide film aged under bipolar pulse voltage
journal, December 2012

  • Yang, Yang; Yin, Di; Zhong, Chuyu
  • Polymer Engineering & Science, Vol. 53, Issue 7
  • DOI: 10.1002/pen.23384

Single-Walled Carbon Nanotube–Metalloporphyrin Chemiresistive Gas Sensor Arrays for Volatile Organic Compounds
journal, May 2015


Detection of individual gas molecules adsorbed on graphene
journal, July 2007

  • Schedin, F.; Geim, A. K.; Morozov, S. V.
  • Nature Materials, Vol. 6, Issue 9, p. 652-655
  • DOI: 10.1038/nmat1967

A roadmap for graphene
journal, October 2012

  • Novoselov, K. S.; Fal′ko, V. I.; Colombo, L.
  • Nature, Vol. 490, Issue 7419
  • DOI: 10.1038/nature11458

Large-scale pattern growth of graphene films for stretchable transparent electrodes
journal, January 2009


Centimeter-Long and Large-Scale Micropatterns of Reduced Graphene Oxide Films: Fabrication and Sensing Applications
journal, May 2010

  • He, Qiyuan; Sudibya, Herry Gunadi; Yin, Zongyou
  • ACS Nano, Vol. 4, Issue 6
  • DOI: 10.1021/nn100780v

Laterally extended atomically precise graphene nanoribbons with improved electrical conductivity for efficient gas sensing
journal, October 2017


Transparent, Flexible, All-Reduced Graphene Oxide Thin Film Transistors
journal, May 2011

  • He, Qiyuan; Wu, Shixin; Gao, Shuang
  • ACS Nano, Vol. 5, Issue 6
  • DOI: 10.1021/nn201118c

Graphene Nanoplatelet-Polymer Chemiresistive Sensor Arrays for the Detection and Discrimination of Chemical Warfare Agent Simulants
journal, November 2017


Pulsed Electric Current V-Bending Springback of AZ31B Magnesium Alloy Sheets
journal, April 2019

  • Lee, Jinwoo; Bong, Hyuk Jong; Lee, Young-Seon
  • Metallurgical and Materials Transactions A, Vol. 50, Issue 6
  • DOI: 10.1007/s11661-019-05213-0