skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves

Abstract

Understanding dynamic fragmentation in shock-loaded metals and predicting properties of the resulting ejecta are of considerable importance for both basic and applied science. The nature of material ejection has been shown to change drastically when the free surface melts on compression or release. In this work, we present hydrodynamic simulations of laser-driven microjetting from micron-scale grooves on a tin surface. We study microjet formation across a range of shock strengths from drives that leave the target solid after release to drives that induce shock melting in the target. The shock-state particle velocity (Up) varies from 0.3 to 3 km/s and the shock breakout pressure is 3–120 GPa. The microjet tip velocity is 1–8 km/s and the free-surface velocity varies from 0.1 to 5 km/s. Two tin equations of state are examined: a “soft” model (LEOS 501) where the target melts for Up > 1 km/s and a more detailed multiphase model (SESAME 2161) that melts for Up > 1.4 km/s. We use these two models to examine the influence of phase change and the choice of the material model on microjet formation and evolution. We observe in our computational results that jet formation can be classified into three regimes: amore » low-energy regime where material strength affects jet formation, a moderate-energy regime dominated by the changing phase of tin material, and a high-energy regime where results are insensitive to the material model and jet formation is described by an idealized steady-jet theory. Using an ensemble of 2D simulations, we show that these trends hold across a wide range of drive energies and groove angles.« less

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1];  [1]; ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [1]
  1. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  2. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1734601
Alternate Identifier(s):
OSTI ID: 1734412
Report Number(s):
LLNL-JRNL-813296
Journal ID: ISSN 0021-8979; 1020580
Grant/Contract Number:  
AC52-07NA27344; 18-ERD-060
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 128; Journal Issue: 21; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Shock waves; spalling; computational models; fluid jets; lasers; tin; equations of state; fluid dynamics; mechanical stress; hydrodynamics simulations

Citation Formats

Mackay, K. K., Najjar, F. M., Ali, S. J., Eggert, J. H., Haxhimali, T., Morgan, B. E., Park, H. S., Ping, Y., Rinderknecht, H. G., Stan, C. V., and Saunders, A. M.. Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0028147.
Mackay, K. K., Najjar, F. M., Ali, S. J., Eggert, J. H., Haxhimali, T., Morgan, B. E., Park, H. S., Ping, Y., Rinderknecht, H. G., Stan, C. V., & Saunders, A. M.. Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves. United States. https://doi.org/10.1063/5.0028147
Mackay, K. K., Najjar, F. M., Ali, S. J., Eggert, J. H., Haxhimali, T., Morgan, B. E., Park, H. S., Ping, Y., Rinderknecht, H. G., Stan, C. V., and Saunders, A. M.. Mon . "Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves". United States. https://doi.org/10.1063/5.0028147. https://www.osti.gov/servlets/purl/1734601.
@article{osti_1734601,
title = {Hydrodynamic computations of high-power laser drives generating metal ejecta jets from surface grooves},
author = {Mackay, K. K. and Najjar, F. M. and Ali, S. J. and Eggert, J. H. and Haxhimali, T. and Morgan, B. E. and Park, H. S. and Ping, Y. and Rinderknecht, H. G. and Stan, C. V. and Saunders, A. M.},
abstractNote = {Understanding dynamic fragmentation in shock-loaded metals and predicting properties of the resulting ejecta are of considerable importance for both basic and applied science. The nature of material ejection has been shown to change drastically when the free surface melts on compression or release. In this work, we present hydrodynamic simulations of laser-driven microjetting from micron-scale grooves on a tin surface. We study microjet formation across a range of shock strengths from drives that leave the target solid after release to drives that induce shock melting in the target. The shock-state particle velocity (Up) varies from 0.3 to 3 km/s and the shock breakout pressure is 3–120 GPa. The microjet tip velocity is 1–8 km/s and the free-surface velocity varies from 0.1 to 5 km/s. Two tin equations of state are examined: a “soft” model (LEOS 501) where the target melts for Up > 1 km/s and a more detailed multiphase model (SESAME 2161) that melts for Up > 1.4 km/s. We use these two models to examine the influence of phase change and the choice of the material model on microjet formation and evolution. We observe in our computational results that jet formation can be classified into three regimes: a low-energy regime where material strength affects jet formation, a moderate-energy regime dominated by the changing phase of tin material, and a high-energy regime where results are insensitive to the material model and jet formation is described by an idealized steady-jet theory. Using an ensemble of 2D simulations, we show that these trends hold across a wide range of drive energies and groove angles.},
doi = {10.1063/5.0028147},
journal = {Journal of Applied Physics},
number = 21,
volume = 128,
place = {United States},
year = {2020},
month = {12}
}

Works referenced in this record:

Hydrodynamic simulations of microjetting from shock-loaded grooves
conference, January 2017

  • Roland, C.; de Rességuier, T.; Sollier, A.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2015: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.4971652

A tensor artificial viscosity using a finite element approach
journal, December 2009


Microjetting from a grooved Al surface under supported and unsupported shocks
journal, August 2014

  • Shao, Jian-Li; Wang, Pei; He, An-Min
  • Journal of Applied Physics, Vol. 116, Issue 7
  • DOI: 10.1063/1.4891733

Effect of viscosity on Rayleigh-Taylor and Richtmyer-Meshkov instabilities
journal, January 1993


On shock driven jetting of liquid from non-sinusoidal surfaces into a vacuum
journal, November 2015

  • Cherne, F. J.; Hammerberg, J. E.; Andrews, M. J.
  • Journal of Applied Physics, Vol. 118, Issue 18
  • DOI: 10.1063/1.4934645

Material dynamics under extreme conditions of pressure and strain rate
journal, April 2006

  • Remington, B. A.; Allen, P.; Bringa, E. M.
  • Materials Science and Technology, Vol. 22, Issue 4
  • DOI: 10.1179/174328406X91069

Melt-driven erosion in microparticle impact
journal, November 2018

  • Hassani-Gangaraj, Mostafa; Veysset, David; Nelson, Keith A.
  • Nature Communications, Vol. 9, Issue 1
  • DOI: 10.1038/s41467-018-07509-y

Unstable Richtmyer–Meshkov growth of solid and liquid metals in vacuum
journal, June 2012

  • Buttler, W. T.; Oró, D. M.; Preston, D. L.
  • Journal of Fluid Mechanics, Vol. 703
  • DOI: 10.1017/jfm.2012.190

Laser shocking of materials: Toward the national ignition facility
journal, January 2010


A constitutive model for strain rates from 10 4 to 10 6 s 1
journal, February 1989

  • Steinberg, D. J.; Lund, C. M.
  • Journal of Applied Physics, Vol. 65, Issue 4
  • DOI: 10.1063/1.342968

A study of ALE simulations of Rayleigh–Taylor instability
journal, March 2001

  • Darlington, Rebecca M.; McAbee, Thomas L.; Rodrigue, Garry
  • Computer Physics Communications, Vol. 135, Issue 1
  • DOI: 10.1016/S0010-4655(00)00216-2

Picosecond x-ray radiography of microjets expanding from laser shock-loaded grooves
journal, August 2018

  • de Rességuier, T.; Prudhomme, G.; Roland, C.
  • Journal of Applied Physics, Vol. 124, Issue 6
  • DOI: 10.1063/1.5040304

A Model of a Source of Shock Wave Metal Ejection Based on Richtmyer–Meshkov Instability Theory
journal, June 2017

  • Georgievskaya, Alla B.; Raevsky, V. A.
  • Journal of Dynamic Behavior of Materials, Vol. 3, Issue 2
  • DOI: 10.1007/s40870-017-0118-2

Cavitation bubble interacting with a Richtmyer-Meshkov unstable sheet and spike
conference, January 2018

  • Buttler, W. T.; Renner, D.; Morris, C.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2017: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.5044845

The relation between shock-state particle velocity and free surface velocity: A molecular dynamics study on single crystal Cu and silica glass
journal, May 2008

  • Luo, Sheng-Nian; Han, Li-Bo; Xie, Yun
  • Journal of Applied Physics, Vol. 103, Issue 9
  • DOI: 10.1063/1.2919571

Equation of state and phase diagram of tin at high pressures
journal, July 2008


Dynamic fragmentation of laser shock-melted tin: experiment and modelling
journal, July 2009

  • Rességuier, T.; Signor, L.; Dragon, A.
  • International Journal of Fracture, Vol. 163, Issue 1-2
  • DOI: 10.1007/s10704-009-9378-8

Re‐Examination of the Nonsteady Theory of Jet Formation by Lined Cavity Charges
journal, April 1955

  • Eichelberger, R. J.
  • Journal of Applied Physics, Vol. 26, Issue 4
  • DOI: 10.1063/1.1722005

Influence of Shockwave Profile on Ejecta
conference, January 2009

  • Zellner, Michael B.; Dimonte, Guy; Germann, Timothy C.
  • SHOCK COMPRESSION OF CONDENSED MATTER 2009: Proceedings of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3294980

A constitutive model for metals applicable at high‐strain rate
journal, March 1980

  • Steinberg, D. J.; Cochran, S. G.; Guinan, M. W.
  • Journal of Applied Physics, Vol. 51, Issue 3
  • DOI: 10.1063/1.327799

X-ray radiography of microjetting from grooved surfaces in tin sample subjected to laser driven shock
journal, July 2019

  • Xin, Jianting; He, Anmin; Liu, Wenbin
  • Journal of Micromechanics and Microengineering, Vol. 29, Issue 9
  • DOI: 10.1088/1361-6439/ab2c56

Equations of State for Ablator Materials in Inertial Confinement Fusion Simulations
journal, May 2016


Strong stabilization of the Rayleigh–Taylor instability by material strength at megabar pressures
journal, May 2010

  • Park, Hye-Sook; Remington, B. A.; Becker, R. C.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3363170

Calculating the Shrapnel Generation and Subsequent Damage to First Wall and Optics Components for the National Ignition Facility
journal, December 1996


Effects of shock-breakout pressure on ejection of micron-scale material from shocked tin surfaces
journal, July 2007

  • Zellner, M. B.; Grover, M.; Hammerberg, J. E.
  • Journal of Applied Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.2752130

The destruction of tektites by micrometeoroid impact
journal, December 1969

  • Gault, Donald E.; Wedekind, John A.
  • Journal of Geophysical Research, Vol. 74, Issue 27
  • DOI: 10.1029/JB074i027p06780

Explosives with Lined Cavities
journal, June 1948

  • Birkhoff, Garrett; MacDougall, Duncan P.; Pugh, Emerson M.
  • Journal of Applied Physics, Vol. 19, Issue 6
  • DOI: 10.1063/1.1698173

Probing the underlying physics of ejecta production from shocked Sn samples
journal, June 2008

  • Zellner, M. B.; McNeil, W. Vogan; Hammerberg, J. E.
  • Journal of Applied Physics, Vol. 103, Issue 12
  • DOI: 10.1063/1.2939253

Skew photonic Doppler velocimetry to investigate the expansion of a cloud of droplets created by micro-spalling of laser shock-melted metal foils
journal, December 2012

  • Loison, D.; de Rességuier, T.; Dragon, A.
  • Journal of Applied Physics, Vol. 112, Issue 11
  • DOI: 10.1063/1.4769304

Ejecta particle size distributions for shock loaded Sn and Al metals
journal, November 2002

  • Sorenson, D. S.; Minich, R. W.; Romero, J. L.
  • Journal of Applied Physics, Vol. 92, Issue 10
  • DOI: 10.1063/1.1515125

A Multi-Phase Equation of State and Strength Model for Tin
conference, January 2006

  • Cox, G. A.
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2005: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.2263300

Microjetting from grooved surfaces in metallic samples subjected to laser driven shocks
journal, January 2014

  • de Rességuier, T.; Lescoute, E.; Sollier, A.
  • Journal of Applied Physics, Vol. 115, Issue 4
  • DOI: 10.1063/1.4863719

Ejection of material from shocked surfaces
journal, September 1976

  • Asay, J. R.; Mix, L. P.; Perry, F. C.
  • Applied Physics Letters, Vol. 29, Issue 5
  • DOI: 10.1063/1.89066

Theory of Jet Formation by Charges with Lined Conical Cavities
journal, May 1952

  • Pugh, Emerson M.; Eichelberger, R. J.; Rostoker, Norman
  • Journal of Applied Physics, Vol. 23, Issue 5
  • DOI: 10.1063/1.1702246

Laser Driven Compression to Investigate Shock-Induced Melting of Metals
journal, October 2014

  • de Rességuier, Thibaut; Loison, Didier; Dragon, André
  • Metals, Vol. 4, Issue 4
  • DOI: 10.3390/met4040490

Laser-driven spall experiments in ductile materials in order to characterize Johnson fracture model constants
conference, January 2012

  • Videau, Laurent; Combis, Patrick; Laffite, Stephane
  • SHOCK COMPRESSION OF CONDENSED MATTER - 2011: Proceedings of the Conference of the American Physical Society Topical Group on Shock Compression of Condensed Matter, AIP Conference Proceedings
  • DOI: 10.1063/1.3686449

Coordination changes in liquid tin under shock compression determined using in situ femtosecond x-ray diffraction
journal, December 2019

  • Briggs, R.; Gorman, M. G.; Zhang, S.
  • Applied Physics Letters, Vol. 115, Issue 26
  • DOI: 10.1063/1.5127291

Modelling of Laser Spall Experiments on Aluminium
conference, January 2002

  • Robinson, C. M.
  • Shock Compression of Condensed Matter - 2001: 12th APS Topical Conference, AIP Conference Proceedings
  • DOI: 10.1063/1.1483791

Spallation of metals under laser irradiation
journal, October 1991

  • Fortov, V. E.; Kostin, V. V.; Eliezer, S.
  • Journal of Applied Physics, Vol. 70, Issue 8
  • DOI: 10.1063/1.349087

Dynamic fracture and spallation in ductile solids
journal, April 1981

  • Johnson, J. N.
  • Journal of Applied Physics, Vol. 52, Issue 4
  • DOI: 10.1063/1.329011