skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

This content will become publicly available on December 7, 2021

Title: Direct-drive laser fusion: status, plans and future

Abstract

Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser–plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser–plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the ‘polar-drive’ configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. Furthermore, the paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory.

Authors:
ORCiD logo [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1];  [1] more »;  [1];  [1];  [1];  [1];  [1];  [1];  [2] « less
  1. Univ. of Rochester, NY (United States). Lab. for Laser Energetics
  2. General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Univ. of Rochester, NY (United States). Lab. for Laser Energetics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
Contributing Org.:
Laboratory for Laser Energetics, University of Rochester
OSTI Identifier:
1734543
Report Number(s):
2020-210, 1604, 2557
Journal ID: ISSN 1364-503X; 2020-210, 1604, 2557
Grant/Contract Number:  
NA0003856
Resource Type:
Accepted Manuscript
Journal Name:
Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences
Additional Journal Information:
Journal Volume: 379; Journal Issue: 2189; Journal ID: ISSN 1364-503X
Publisher:
The Royal Society Publishing
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY

Citation Formats

Campbell, E. M., Sangster, T. C., Goncharov, V. N., Zuegel, J. D., Morse, S. F. B., Sorce, C., Collins, G. W., Wei, M. S., Betti, R., Regan, S. P., Froula, D. H., Dorrer, C., Harding, D. R., Gopalaswamy, V., Knauer, J. P., Shah, R., Mannion, O. M., Marozas, J. A., Radha, P. B., Rosenberg, M. J., Collins, T. J. B., Christopherson, A. R., Solodov, A. A., Cao, D., Palastro, J. P., Follett, R. K., and Farrell, M.. Direct-drive laser fusion: status, plans and future. United States: N. p., 2020. Web. https://doi.org/10.1098/rsta.2020.0011.
Campbell, E. M., Sangster, T. C., Goncharov, V. N., Zuegel, J. D., Morse, S. F. B., Sorce, C., Collins, G. W., Wei, M. S., Betti, R., Regan, S. P., Froula, D. H., Dorrer, C., Harding, D. R., Gopalaswamy, V., Knauer, J. P., Shah, R., Mannion, O. M., Marozas, J. A., Radha, P. B., Rosenberg, M. J., Collins, T. J. B., Christopherson, A. R., Solodov, A. A., Cao, D., Palastro, J. P., Follett, R. K., & Farrell, M.. Direct-drive laser fusion: status, plans and future. United States. https://doi.org/10.1098/rsta.2020.0011
Campbell, E. M., Sangster, T. C., Goncharov, V. N., Zuegel, J. D., Morse, S. F. B., Sorce, C., Collins, G. W., Wei, M. S., Betti, R., Regan, S. P., Froula, D. H., Dorrer, C., Harding, D. R., Gopalaswamy, V., Knauer, J. P., Shah, R., Mannion, O. M., Marozas, J. A., Radha, P. B., Rosenberg, M. J., Collins, T. J. B., Christopherson, A. R., Solodov, A. A., Cao, D., Palastro, J. P., Follett, R. K., and Farrell, M.. Mon . "Direct-drive laser fusion: status, plans and future". United States. https://doi.org/10.1098/rsta.2020.0011.
@article{osti_1734543,
title = {Direct-drive laser fusion: status, plans and future},
author = {Campbell, E. M. and Sangster, T. C. and Goncharov, V. N. and Zuegel, J. D. and Morse, S. F. B. and Sorce, C. and Collins, G. W. and Wei, M. S. and Betti, R. and Regan, S. P. and Froula, D. H. and Dorrer, C. and Harding, D. R. and Gopalaswamy, V. and Knauer, J. P. and Shah, R. and Mannion, O. M. and Marozas, J. A. and Radha, P. B. and Rosenberg, M. J. and Collins, T. J. B. and Christopherson, A. R. and Solodov, A. A. and Cao, D. and Palastro, J. P. and Follett, R. K. and Farrell, M.},
abstractNote = {Laser-direct drive (LDD), along with laser indirect (X-ray) drive (LID) and magnetic drive with pulsed power, is one of the three viable inertial confinement fusion approaches to achieving fusion ignition and gain in the laboratory. The LDD programme is primarily being executed at both the Omega Laser Facility at the Laboratory for Laser Energetics and at the National Ignition Facility (NIF) at Lawrence Livermore National Laboratory. LDD research at Omega includes cryogenic implosions, fundamental physics including material properties, hydrodynamics and laser–plasma interaction physics. LDD research on the NIF is focused on energy coupling and laser–plasma interactions physics at ignition-scale plasmas. Limited implosions on the NIF in the ‘polar-drive’ configuration, where the irradiation geometry is configured for LID, are also a feature of LDD research. The ability to conduct research over a large range of energy, power and scale size using both Omega and the NIF is a major positive aspect of LDD research that reduces the risk in scaling from OMEGA to megajoule-class lasers. Furthermore, the paper will summarize the present status of LDD research and plans for the future with the goal of ultimately achieving a burning plasma in the laboratory.},
doi = {10.1098/rsta.2020.0011},
journal = {Philosophical Transactions of the Royal Society. A, Mathematical, Physical and Engineering Sciences},
number = 2189,
volume = 379,
place = {United States},
year = {2020},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on December 7, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Laser Compression of Matter to Super-High Densities: Thermonuclear (CTR) Applications
journal, September 1972

  • Nuckolls, John; Wood, Lowell; Thiessen, Albert
  • Nature, Vol. 239, Issue 5368, p. 139-142
  • DOI: 10.1038/239139a0

Inertial-confinement fusion with lasers
journal, May 2016

  • Betti, R.; Hurricane, O. A.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3736

Review of pulsed power-driven high energy density physics research on Z at Sandia
journal, July 2020

  • Sinars, D. B.; Sweeney, M. A.; Alexander, C. S.
  • Physics of Plasmas, Vol. 27, Issue 7
  • DOI: 10.1063/5.0007476

The National Ignition Facility - applications for inertial fusion energy and high-energy-density science
journal, December 1999


The National Ignition Facility
journal, December 2004


Laser-direct-drive program: Promise, challenge, and path forward
journal, March 2017

  • Campbell, E. M.; Goncharov, V. N.; Sangster, T. C.
  • Matter and Radiation at Extremes, Vol. 2, Issue 2
  • DOI: 10.1016/j.mre.2017.03.001

National direct-drive program on OMEGA and the National Ignition Facility
journal, October 2016


Alpha Heating and Burning Plasmas in Inertial Confinement Fusion
journal, June 2015


Thermonuclear ignition and the onset of propagating burn in inertial fusion implosions
journal, February 2019


A polar-drive–ignition design for the National Ignition Facility
journal, May 2012

  • Collins, T. J. B.; Marozas, J. A.; Anderson, K. S.
  • Physics of Plasmas, Vol. 19, Issue 5
  • DOI: 10.1063/1.3693969

Phase conversion of lasers with low-loss distributed phase plates
conference, May 1993

  • Kessler, Terrance J.; Lin, Ying; Armstrong, J. Joseph
  • OE/LASE'93: Optics, Electro-Optics, & Laser Applications in Science& Engineering, SPIE Proceedings
  • DOI: 10.1117/12.154474

Improved laser‐beam uniformity using the angular dispersion of frequency‐modulated light
journal, October 1989

  • Skupsky, S.; Short, R. W.; Kessler, T.
  • Journal of Applied Physics, Vol. 66, Issue 8
  • DOI: 10.1063/1.344101

Use of induced spatial incoherence for uniform illumination of laser fusion targets
journal, June 1983


Direct‐drive laser‐fusion experiments with the OMEGA, 60‐beam, >40 kJ, ultraviolet laser system
journal, May 1996

  • Soures, J. M.; McCrory, R. L.; Verdon, C. P.
  • Physics of Plasmas, Vol. 3, Issue 5
  • DOI: 10.1063/1.871662

Theory and simulation of stimulated Brillouin scatter excited by nonabsorbed light in laser fusion systems
journal, January 1981


Wavelength-detuning cross-beam energy transfer mitigation scheme for direct drive: Modeling and evidence from National Ignition Facility implosions
journal, May 2018

  • Marozas, J. A.; Hohenberger, M.; Rosenberg, M. J.
  • Physics of Plasmas, Vol. 25, Issue 5
  • DOI: 10.1063/1.5022181

Azimuthal Drive Asymmetry in Inertial Confinement Fusion Implosions on the National Ignition Facility
journal, April 2020


Tripled yield in direct-drive laser fusion through statistical modelling
journal, January 2019


Theory of hydro-equivalent ignition for inertial fusion and its applications to OMEGA and the National Ignition Facility
journal, May 2014

  • Nora, R.; Betti, R.; Anderson, K. S.
  • Physics of Plasmas, Vol. 21, Issue 5
  • DOI: 10.1063/1.4875331

Nova experimental facility (invited)
journal, August 1986

  • Campbell, E. M.; Hunt, J. T.; Bliss, E. S.
  • Review of Scientific Instruments, Vol. 57, Issue 8
  • DOI: 10.1063/1.1138755

Origins and Scaling of Hot-Electron Preheat in Ignition-Scale Direct-Drive Inertial Confinement Fusion Experiments
journal, January 2018


Description of the NIF Laser
journal, February 2016

  • Spaeth, M. L.; Manes, K. R.; Kalantar, D. H.
  • Fusion Science and Technology, Vol. 69, Issue 1
  • DOI: 10.13182/FST15-144

Mitigation of cross-beam energy transfer in ignition-scale polar-direct-drive target designs for the National Ignition Facility
journal, July 2018

  • Collins, T. J. B.; Marozas, J. A.
  • Physics of Plasmas, Vol. 25, Issue 7
  • DOI: 10.1063/1.5039513

Hot-electron generation at direct-drive ignition-relevant plasma conditions at the National Ignition Facility
journal, May 2020

  • Solodov, A. A.; Rosenberg, M. J.; Seka, W.
  • Physics of Plasmas, Vol. 27, Issue 5
  • DOI: 10.1063/1.5134044

Efficient Raman Sidescatter and Hot-Electron Production in Laser-Plasma Interaction Experiments
journal, October 1984


Two-plasmon-decay instability in direct-drive inertial confinement fusion experiments
journal, May 2009

  • Seka, W.; Edgell, D. H.; Myatt, J. F.
  • Physics of Plasmas, Vol. 16, Issue 5
  • DOI: 10.1063/1.3125242

Measurements of the divergence of fast electrons in laser-irradiated spherical targets
journal, September 2013

  • Yaakobi, B.; Solodov, A. A.; Myatt, J. F.
  • Physics of Plasmas, Vol. 20, Issue 9
  • DOI: 10.1063/1.4824008

Laser performance of the SG-III laser facility
journal, January 2016

  • Zheng, Wanguo; Wei, Xiaofeng; Zhu, Qihua
  • High Power Laser Science and Engineering, Vol. 4
  • DOI: 10.1017/hpl.2016.20

The Laser Mega-Joule : LMJ & PETAL status and Program Overview
journal, March 2016


High-energy krypton fluoride lasers for inertial fusion
journal, January 2015

  • Obenschain, Stephen; Lehmberg, Robert; Kehne, David
  • Applied Optics, Vol. 54, Issue 31
  • DOI: 10.1364/AO.54.00F103

Evolution of the Electron Distribution Function in the Presence of Inverse Bremsstrahlung Heating and Collisional Ionization
journal, January 2020


Nonlinear Inverse Bremsstrahlung and Heated-Electron Distributions
journal, March 1980


Non-Maxwellian electron distributions and continuum X-ray emission in inverse Bremsstrahlung heated plasmas
journal, November 1988


Kinetic Theory of Electron-Plasma and Ion-Acoustic Waves in Nonuniformly Heated Laser Plasmas
journal, March 1998


Thresholds of absolute instabilities driven by a broadband laser
journal, June 2019

  • Follett, R. K.; Shaw, J. G.; Myatt, J. F.
  • Physics of Plasmas, Vol. 26, Issue 6
  • DOI: 10.1063/1.5098479

Ultrahigh performance three-dimensional electromagnetic relativistic kinetic plasma simulation
journal, May 2008

  • Bowers, K. J.; Albright, B. J.; Yin, L.
  • Physics of Plasmas, Vol. 15, Issue 5
  • DOI: 10.1063/1.2840133

OSIRIS: A Three-Dimensional, Fully Relativistic Particle in Cell Code for Modeling Plasma Based Accelerators
book, January 2002

  • Fonseca, R. A.; Silva, L. O.; Tsung, F. S.
  • Computational Science — ICCS 2002, p. 342-351
  • DOI: 10.1007/3-540-47789-6_36

LPSE: A 3-D wave-based model of cross-beam energy transfer in laser-irradiated plasmas
journal, December 2019

  • Myatt, Jason F.; Shaw, John G.; Follett, Russell K.
  • Journal of Computational Physics, Vol. 399
  • DOI: 10.1016/j.jcp.2019.108916

Impact of the Langdon effect on crossed-beam energy transfer
journal, December 2019


Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth
journal, June 2018


Generation of bandwidth-limited tunable picosecond pulses by injection-locked optical parametric oscillators
journal, January 1986

  • Magnitskii, S. A.; Malachova, V. I.; Tarasevich, A. P.
  • Optics Letters, Vol. 11, Issue 1
  • DOI: 10.1364/OL.11.000018

High-energy parametric amplification of spectrally incoherent broadband pulses
journal, January 2020