skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing

Abstract

Secondary organic aerosols (SOA) are large contributors to fine particle mass loading and number concentration and interact with clouds and radiation. Several processes affect the formation, chemical transformation, and removal of SOA in the atmosphere. For computational efficiency, global models use simplified SOA treatments, which often do not capture the dynamics of SOA formation. Here we test more complex SOA treatments within the global Energy Exascale Earth System Model (E3SM) to investigate how simulated SOA spatial distributions respond to some of the important but uncertain processes affecting SOA formation, removal, and lifetime. We evaluate model predictions with a suite of surface, aircraft, and satellite observations that span the globe and the full troposphere. Simulations indicate that both a strong production (achieved here by multigenerational aging of SOA precursors that includes moderate functionalization) and a strong sink of SOA (especially in the middle upper troposphere, achieved here by adding particle-phase photolysis) are needed to reproduce the vertical distribution of organic aerosol (OA) measured during several aircraft field campaigns; without this sink, the simulated middle upper tropospheric OA is too large. Our results show that variations in SOA chemistry formulations change SOA wet removal lifetime by a factor of 3 due tomore » changes in horizontal and vertical distributions of SOA. In all the SOA chemistry formulations tested here, an efficient chemical sink, that is, particle-phase photolysis, was needed to reproduce the aircraft measurements of OA at high altitudes. Globally, SOA removal rates by photolysis are equal to the wet removal sink, and photolysis decreases SOA lifetimes from 10 to ~3 days. A recent review of multiple field studies found no increase in net OA formation over and downwind biomass burning regions, so we also tested an alternative, empirical SOA treatment that increases primary organic aerosol (POA) emissions near source region and converts POA to SOA with an aging time scale of 1 day. Although this empirical treatment performs surprisingly well in simulating OA loadings near the surface, it overestimates OA loadings in the middle and upper troposphere compared to aircraft measurements, likely due to strong convective transport to high altitudes where wet removal is weak. The default improved model formulation (multigenerational aging with moderate fragmentation and photolysis) performs much better than the empirical treatment in these regions. Differences in SOA treatments greatly affect the SOA direct radiative effect, which ranges from -0.65 (moderate fragmentation and photolysis) to -2 W m-2 (moderate fragmentation without photolysis). Notably, most SOA formulations predict similar global indirect forcing of SOA calculated as the difference in cloud forcing between present-day and preindustrial simulations.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [2];  [4]; ORCiD logo [5]; ORCiD logo [5]; ORCiD logo [6]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [2]; ORCiD logo [7]; ORCiD logo [8]; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]
  1. Pacific Northwest National Laboratory Richland WA USA, Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Jiangsu Provincial Collaborative Innovation Center of Climate Change Nanjing University Nanjing China
  2. Pacific Northwest National Laboratory Richland WA USA
  3. Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, School of Environmental Science and Engineering Nanjing University of Information Science and Technology Nanjing China
  4. TOFWERK Thun Switzerland
  5. Cooperative Institute for Research in Environmental Sciences (CIRES) &, Department of Chemistry University of Colorado Boulder Boulder CO USA
  6. Department of Environmental Toxicology University of California Davis CA USA
  7. Los Alamos National Laboratory Earth Systems Observations (EES‐14) Los Alamos NM USA
  8. Lawrence Livermore National Laboratory Livermore CA USA
  9. John A. Paulson School of Engineering and Applied Sciences Harvard University Cambridge MA USA
  10. Particle Chemistry, Biogeochemistry and Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz Germany
  11. Particle Chemistry, Biogeochemistry and Multiphase Chemistry Department Max Planck Institute for Chemistry Mainz Germany, Leibniz Institute for Tropospheric Research (TROPOS) Leipzig Germany
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1734410
Alternate Identifier(s):
OSTI ID: 1755166; OSTI ID: 1786720
Report Number(s):
PNNL-SA-156400
Journal ID: ISSN 1942-2466
Grant/Contract Number:  
AC05-76RL01830; NNX15AH33A; 80NSSC19K0124; SC0014620; AC52‐07NA27344
Resource Type:
Published Article
Journal Name:
Journal of Advances in Modeling Earth Systems
Additional Journal Information:
Journal Name: Journal of Advances in Modeling Earth Systems Journal Volume: 12 Journal Issue: 12; Journal ID: ISSN 1942-2466
Publisher:
American Geophysical Union (AGU)
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES; secondary organic aerosol; photolytic removal; fragmentation reaction

Citation Formats

Lou, Sijia, Shrivastava, Manish, Easter, Richard C., Yang, Yang, Ma, Po‐Lun, Wang, Hailong, Cubison, Michael J., Campuzano‐Jost, Pedro, Jimenez, Jose L., Zhang, Qi, Rasch, Philip J., Shilling, John E., Zelenyuk, Alla, Dubey, Manvendra, Cameron‐Smith, Philip, Martin, Scot T., Schneider, Johannes, and Schulz, Christiane. New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. United States: N. p., 2020. Web. https://doi.org/10.1029/2020MS002266.
Lou, Sijia, Shrivastava, Manish, Easter, Richard C., Yang, Yang, Ma, Po‐Lun, Wang, Hailong, Cubison, Michael J., Campuzano‐Jost, Pedro, Jimenez, Jose L., Zhang, Qi, Rasch, Philip J., Shilling, John E., Zelenyuk, Alla, Dubey, Manvendra, Cameron‐Smith, Philip, Martin, Scot T., Schneider, Johannes, & Schulz, Christiane. New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing. United States. https://doi.org/10.1029/2020MS002266
Lou, Sijia, Shrivastava, Manish, Easter, Richard C., Yang, Yang, Ma, Po‐Lun, Wang, Hailong, Cubison, Michael J., Campuzano‐Jost, Pedro, Jimenez, Jose L., Zhang, Qi, Rasch, Philip J., Shilling, John E., Zelenyuk, Alla, Dubey, Manvendra, Cameron‐Smith, Philip, Martin, Scot T., Schneider, Johannes, and Schulz, Christiane. Mon . "New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing". United States. https://doi.org/10.1029/2020MS002266.
@article{osti_1734410,
title = {New SOA Treatments Within the Energy Exascale Earth System Model (E3SM): Strong Production and Sinks Govern Atmospheric SOA Distributions and Radiative Forcing},
author = {Lou, Sijia and Shrivastava, Manish and Easter, Richard C. and Yang, Yang and Ma, Po‐Lun and Wang, Hailong and Cubison, Michael J. and Campuzano‐Jost, Pedro and Jimenez, Jose L. and Zhang, Qi and Rasch, Philip J. and Shilling, John E. and Zelenyuk, Alla and Dubey, Manvendra and Cameron‐Smith, Philip and Martin, Scot T. and Schneider, Johannes and Schulz, Christiane},
abstractNote = {Secondary organic aerosols (SOA) are large contributors to fine particle mass loading and number concentration and interact with clouds and radiation. Several processes affect the formation, chemical transformation, and removal of SOA in the atmosphere. For computational efficiency, global models use simplified SOA treatments, which often do not capture the dynamics of SOA formation. Here we test more complex SOA treatments within the global Energy Exascale Earth System Model (E3SM) to investigate how simulated SOA spatial distributions respond to some of the important but uncertain processes affecting SOA formation, removal, and lifetime. We evaluate model predictions with a suite of surface, aircraft, and satellite observations that span the globe and the full troposphere. Simulations indicate that both a strong production (achieved here by multigenerational aging of SOA precursors that includes moderate functionalization) and a strong sink of SOA (especially in the middle upper troposphere, achieved here by adding particle-phase photolysis) are needed to reproduce the vertical distribution of organic aerosol (OA) measured during several aircraft field campaigns; without this sink, the simulated middle upper tropospheric OA is too large. Our results show that variations in SOA chemistry formulations change SOA wet removal lifetime by a factor of 3 due to changes in horizontal and vertical distributions of SOA. In all the SOA chemistry formulations tested here, an efficient chemical sink, that is, particle-phase photolysis, was needed to reproduce the aircraft measurements of OA at high altitudes. Globally, SOA removal rates by photolysis are equal to the wet removal sink, and photolysis decreases SOA lifetimes from 10 to ~3 days. A recent review of multiple field studies found no increase in net OA formation over and downwind biomass burning regions, so we also tested an alternative, empirical SOA treatment that increases primary organic aerosol (POA) emissions near source region and converts POA to SOA with an aging time scale of 1 day. Although this empirical treatment performs surprisingly well in simulating OA loadings near the surface, it overestimates OA loadings in the middle and upper troposphere compared to aircraft measurements, likely due to strong convective transport to high altitudes where wet removal is weak. The default improved model formulation (multigenerational aging with moderate fragmentation and photolysis) performs much better than the empirical treatment in these regions. Differences in SOA treatments greatly affect the SOA direct radiative effect, which ranges from -0.65 (moderate fragmentation and photolysis) to -2 W m-2 (moderate fragmentation without photolysis). Notably, most SOA formulations predict similar global indirect forcing of SOA calculated as the difference in cloud forcing between present-day and preindustrial simulations.},
doi = {10.1029/2020MS002266},
journal = {Journal of Advances in Modeling Earth Systems},
number = 12,
volume = 12,
place = {United States},
year = {2020},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1029/2020MS002266

Save / Share:

Works referenced in this record:

Widespread Pollution From Secondary Sources of Organic Aerosols During Winter in the Northeastern United States
journal, March 2019

  • Shah, Viral; Jaeglé, Lyatt; Jimenez, Jose L.
  • Geophysical Research Letters, Vol. 46, Issue 5
  • DOI: 10.1029/2018GL081530

Kinetics, products, and mechanisms of secondary organic aerosol formation
journal, January 2012

  • Ziemann, Paul J.; Atkinson, Roger
  • Chemical Society Reviews, Vol. 41, Issue 19
  • DOI: 10.1039/c2cs35122f

Aging of biomass burning aerosols over West Africa: Aircraft measurements of chemical composition, microphysical properties, and emission ratios
journal, January 2008

  • Capes, G.; Johnson, B.; McFiggans, G.
  • Journal of Geophysical Research, Vol. 113
  • DOI: 10.1029/2008JD009845

Aerosol optical properties in the southeastern United States in summer – Part 1: Hygroscopic growth
journal, January 2016

  • Brock, Charles A.; Wagner, Nicholas L.; Anderson, Bruce E.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
  • DOI: 10.5194/acp-16-4987-2016

Ozone-isoprene reaction: Re-examination of the formation of secondary organic aerosol
journal, January 2007

  • Kleindienst, Tadeusz E.; Lewandowski, Michael; Offenberg, John H.
  • Geophysical Research Letters, Vol. 34, Issue 1
  • DOI: 10.1029/2006GL027485

Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing
journal, January 2020

  • Wang, Hailong; Easter, Richard C.; Zhang, Rudong
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 1
  • DOI: 10.1029/2019MS001851

Identification of Polymers as Major Components of Atmospheric Organic Aerosols
journal, March 2004


Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model
journal, January 2013

  • Wang, H.; Easter, R. C.; Rasch, P. J.
  • Geoscientific Model Development, Vol. 6, Issue 3
  • DOI: 10.5194/gmd-6-765-2013

Aging Effects on Biomass Burning Aerosol Mass and Composition: A Critical Review of Field and Laboratory Studies
journal, July 2019

  • Hodshire, Anna L.; Akherati, Ali; Alvarado, Matthew J.
  • Environmental Science & Technology, Vol. 53, Issue 17
  • DOI: 10.1021/acs.est.9b02588

Radiative forcing by aerosols as derived from the AeroCom present-day and pre-industrial simulations
journal, January 2006

  • Schulz, M.; Textor, C.; Kinne, S.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-5225-2006

Global impact of smoke aerosols from landscape fires on climate and the Hadley circulation
journal, January 2013

  • Tosca, M. G.; Randerson, J. T.; Zender, C. S.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 10
  • DOI: 10.5194/acp-13-5227-2013

Aerosol mass spectrometer constraint on the global secondary organic aerosol budget
journal, January 2011

  • Spracklen, D. V.; Jimenez, J. L.; Carslaw, K. S.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12109-2011

Secondary organic aerosol formation from the β-pinene+NO 3 system: effect of humidity and peroxy radical fate
journal, January 2015


Evolution of Asian aerosols during transpacific transport in INTEX-B
journal, January 2009

  • Dunlea, E. J.; DeCarlo, P. F.; Aiken, A. C.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 19
  • DOI: 10.5194/acp-9-7257-2009

Analysis of particulate emissions from tropical biomass burning using a global aerosol model and long-term surface observations
journal, January 2016

  • Reddington, Carly L.; Spracklen, Dominick V.; Artaxo, Paulo
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 17
  • DOI: 10.5194/acp-16-11083-2016

Aircraft-based observations of isoprene-epoxydiol-derived secondary organic aerosol (IEPOX-SOA) in the tropical upper troposphere over the Amazon region
journal, January 2018

  • Schulz, Christiane; Schneider, Johannes; Amorim Holanda, Bruna
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 20
  • DOI: 10.5194/acp-18-14979-2018

Major secondary aerosol formation in southern African open biomass burning plumes
journal, June 2018


Global Measurements of Brown Carbon and Estimated Direct Radiative Effects
journal, July 2020

  • Zeng, Linghan; Zhang, Aoxing; Wang, Yuhang
  • Geophysical Research Letters, Vol. 47, Issue 13
  • DOI: 10.1029/2020GL088747

Contrasting the direct radiative effect and direct radiative forcing of aerosols
journal, January 2014

  • Heald, C. L.; Ridley, D. A.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 11
  • DOI: 10.5194/acp-14-5513-2014

Large difference in aerosol radiative effects from BVOC-SOA treatment in three Earth system models
journal, January 2020

  • Sporre, Moa K.; Blichner, Sara M.; Schrödner, Roland
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 14
  • DOI: 10.5194/acp-20-8953-2020

Coupling field and laboratory measurements to estimate the emission factors of identified and unidentified trace gases for prescribed fires
journal, January 2013

  • Yokelson, R. J.; Burling, I. R.; Gilman, J. B.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 1
  • DOI: 10.5194/acp-13-89-2013

Efficient In-Cloud Removal of Aerosols by Deep Convection
journal, January 2019

  • Yu, Pengfei; Froyd, Karl D.; Portmann, Robert W.
  • Geophysical Research Letters, Vol. 46, Issue 2
  • DOI: 10.1029/2018GL080544

Introduction: Observations and Modeling of the Green Ocean Amazon (GoAmazon2014/5)
journal, January 2016

  • Martin, S. T.; Artaxo, P.; Machado, L. A. T.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 8
  • DOI: 10.5194/acp-16-4785-2016

The formation, properties and impact of secondary organic aerosol: current and emerging issues
journal, January 2009

  • Hallquist, M.; Wenger, J. C.; Baltensperger, U.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 14
  • DOI: 10.5194/acp-9-5155-2009

Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model
journal, January 2016


Past and future changes in biogenic volatile organic compound emissions simulated with a global dynamic vegetation model
journal, January 2005

  • Lathière, J.; Hauglustaine, D. A.; De Noblet-Ducoudré, N.
  • Geophysical Research Letters, Vol. 32, Issue 20
  • DOI: 10.1029/2005GL024164

Modeling regional air quality and climate: improving organic aerosol and aerosol activation processes in WRF/Chem version 3.7.1
journal, January 2017

  • Yahya, Khairunnisa; Glotfelty, Timothy; Wang, Kai
  • Geoscientific Model Development, Vol. 10, Issue 6
  • DOI: 10.5194/gmd-10-2333-2017

Climate Forcing and Trends of Organic Aerosols in the Community Earth System Model (CESM2)
journal, December 2019

  • Tilmes, S.; Hodzic, A.; Emmons, L. K.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2019MS001827

Particle-Phase Chemistry of Secondary Organic Material: Modeled Compared to Measured O:C and H:C Elemental Ratios Provide Constraints
journal, June 2011

  • Chen, Qi; Liu, Yingjun; Donahue, Neil M.
  • Environmental Science & Technology, Vol. 45, Issue 11
  • DOI: 10.1021/es104398s

Spatial and seasonal trends in particle concentration and optical extinction in the United States
journal, January 1994

  • Malm, William C.; Sisler, James F.; Huffman, Dale
  • Journal of Geophysical Research, Vol. 99, Issue D1
  • DOI: 10.1029/93JD02916

Transitions from Functionalization to Fragmentation Reactions of Laboratory Secondary Organic Aerosol (SOA) Generated from the OH Oxidation of Alkane Precursors
journal, May 2012

  • Lambe, Andrew T.; Onasch, Timothy B.; Croasdale, David R.
  • Environmental Science & Technology, Vol. 46, Issue 10
  • DOI: 10.1021/es300274t

Mechanism of SOA formation determines magnitude of radiative effects
journal, November 2017

  • Zhu, Jialei; Penner, Joyce E.; Lin, Guangxing
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 48
  • DOI: 10.1073/pnas.1712273114

Direct and semidirect aerosol effects of southern African biomass burning aerosol
journal, January 2011

  • Sakaeda, Naoko; Wood, Robert; Rasch, Philip J.
  • Journal of Geophysical Research, Vol. 116, Issue D12
  • DOI: 10.1029/2010JD015540

Rethinking the global secondary organic aerosol (SOA) budget: stronger production, faster removal, shorter lifetime
journal, January 2016

  • Hodzic, Alma; Kasibhatla, Prasad S.; Jo, Duseong S.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 12
  • DOI: 10.5194/acp-16-7917-2016

Effect of NO<sub>x</sub> level on secondary organic aerosol (SOA) formation from the photooxidation of terpenes
journal, January 2007

  • Ng, N. L.; Chhabra, P. S.; Chan, A. W. H.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 19
  • DOI: 10.5194/acp-7-5159-2007

Impact of Nudging Strategy on the Climate Representativeness and Hindcast Skill of Constrained EAMv1 Simulations
journal, December 2019

  • Sun, Jian; Zhang, Kai; Wan, Hui
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 12
  • DOI: 10.1029/2019MS001831

Emission and Evolution of Submicron Organic Aerosol in Smoke from Wildfires in the Western United States
journal, May 2019


Recent advances in understanding secondary organic aerosol: Implications for global climate forcing: Advances in Secondary Organic Aerosol
journal, June 2017

  • Shrivastava, Manish; Cappa, Christopher D.; Fan, Jiwen
  • Reviews of Geophysics, Vol. 55, Issue 2
  • DOI: 10.1002/2016RG000540

Organic photolysis reactions in tropospheric aerosols: effect on secondary organic aerosol formation and lifetime
journal, January 2015

  • Hodzic, A.; Madronich, S.; Kasibhatla, P. S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 16
  • DOI: 10.5194/acp-15-9253-2015

Comprehensive characterization of atmospheric organic carbon at a forested site
journal, September 2017

  • Hunter, James F.; Day, Douglas A.; Palm, Brett B.
  • Nature Geoscience, Vol. 10, Issue 10
  • DOI: 10.1038/ngeo3018

Model for Simulating Aerosol Interactions and Chemistry (MOSAIC)
journal, January 2008

  • Zaveri, Rahul A.; Easter, Richard C.; Fast, Jerome D.
  • Journal of Geophysical Research, Vol. 113, Issue D13
  • DOI: 10.1029/2007JD008782

Characterization of organic aerosol across the global remote troposphere: a comparison of ATom measurements and global chemistry models
journal, January 2020

  • Hodzic, Alma; Campuzano-Jost, Pedro; Bian, Huisheng
  • Atmospheric Chemistry and Physics, Vol. 20, Issue 8
  • DOI: 10.5194/acp-20-4607-2020

Loading-dependent elemental composition of α-pinene SOA particles
journal, January 2009

  • Shilling, J. E.; Chen, Q.; King, S. M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 3
  • DOI: 10.5194/acp-9-771-2009

Decrease in radiative forcing by organic aerosol nucleation, climate, and land use change
journal, January 2019


High concentration of ultrafine particles in the Amazon free troposphere produced by organic new particle formation
journal, September 2020

  • Zhao, Bin; Shrivastava, Manish; Donahue, Neil M.
  • Proceedings of the National Academy of Sciences, Vol. 117, Issue 41
  • DOI: 10.1073/pnas.2006716117

Ground-based aerosol characterization during the South American Biomass Burning Analysis (SAMBBA) field experiment
journal, January 2014


Fragmentation vs. functionalization: chemical aging and organic aerosol formation
journal, January 2011


An important contribution to springtime Arctic aerosol from biomass burning in Russia: ARCTIC AEROSOL FROM BIOMASS BURNING
journal, January 2010

  • Warneke, C.; Froyd, K. D.; Brioude, J.
  • Geophysical Research Letters, Vol. 37, Issue 1
  • DOI: 10.1029/2009GL041816

Elemental ratio measurements of organic compounds using aerosol mass spectrometry: characterization, improved calibration, and implications
journal, January 2015

  • Canagaratna, M. R.; Jimenez, J. L.; Kroll, J. H.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-253-2015

Photolysis Controls Atmospheric Budgets of Biogenic Secondary Organic Aerosol
journal, March 2020

  • Zawadowicz, Maria A.; Lee, Ben H.; Shrivastava, Manish
  • Environmental Science & Technology, Vol. 54, Issue 7
  • DOI: 10.1021/acs.est.9b07051

Technical Note: On the use of nudging for aerosol–climate model intercomparison studies
journal, January 2014


Secondary organic aerosol (SOA) formation from reaction of isoprene with nitrate radicals (NO 3 )
journal, January 2008

  • Ng, N. L.; Kwan, A. J.; Surratt, J. D.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 14
  • DOI: 10.5194/acp-8-4117-2008

Optical Properties of Aerosols and Clouds: The Software Package OPAC
journal, May 1998


Emission of trace gases and aerosols from biomass burning – an updated assessment
journal, January 2019


Production of extremely low volatile organic compounds from biogenic emissions: Measured yields and atmospheric implications
journal, May 2015

  • Jokinen, Tuija; Berndt, Torsten; Makkonen, Risto
  • Proceedings of the National Academy of Sciences, Vol. 112, Issue 23
  • DOI: 10.1073/pnas.1423977112

Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state
journal, February 2017

  • Slade, Jonathan H.; Shiraiwa, Manabu; Arangio, Andrea
  • Geophysical Research Letters, Vol. 44, Issue 3
  • DOI: 10.1002/2016GL072424

Rethinking Organic Aerosols: Semivolatile Emissions and Photochemical Aging
journal, March 2007


Toward a minimal representation of aerosols in climate models: description and evaluation in the Community Atmosphere Model CAM5
journal, January 2012

  • Liu, X.; Easter, R. C.; Ghan, S. J.
  • Geoscientific Model Development, Vol. 5, Issue 3
  • DOI: 10.5194/gmd-5-709-2012

Historical (1750–2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS)
journal, January 2018

  • Hoesly, Rachel M.; Smith, Steven J.; Feng, Leyang
  • Geoscientific Model Development, Vol. 11, Issue 1
  • DOI: 10.5194/gmd-11-369-2018

Changes in Secondary Organic Aerosol Composition and Mass due to Photolysis: Relative Humidity Dependence
journal, September 2014

  • Wong, Jenny P. S.; Zhou, Shouming; Abbatt, Jonathan P. D.
  • The Journal of Physical Chemistry A, Vol. 119, Issue 19
  • DOI: 10.1021/jp506898c

Understanding Cloud and Convective Characteristics in Version 1 of the E3SM Atmosphere Model
journal, October 2018

  • Xie, Shaocheng; Lin, Wuyin; Rasch, Philip J.
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 10
  • DOI: 10.1029/2018MS001350

Recent Discoveries and Future Challenges in Atmospheric Organic Chemistry
journal, February 2016

  • Glasius, Marianne; Goldstein, Allen H.
  • Environmental Science & Technology, Vol. 50, Issue 6
  • DOI: 10.1021/acs.est.5b05105

Radiative forcing of the direct aerosol effect from AeroCom Phase II simulations
journal, January 2013

  • Myhre, G.; Samset, B. H.; Schulz, M.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 4
  • DOI: 10.5194/acp-13-1853-2013

Fresh versus Photo-recalcitrant Secondary Organic Aerosol: Effects of Organic Mixtures on Aqueous Photodegradation of 4-Nitrophenol
journal, March 2020

  • Braman, Tanner; Dolvin, Lydia; Thrasher, Corey
  • Environmental Science & Technology Letters, Vol. 7, Issue 4
  • DOI: 10.1021/acs.estlett.0c00177

Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power
journal, January 2012


Biomass burning aerosol over the Amazon: analysis of aircraft, surface and satellite observations using a global aerosol model
journal, January 2019

  • Reddington, Carly L.; Morgan, William T.; Darbyshire, Eoghan
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
  • DOI: 10.5194/acp-19-9125-2019

Global data set of biogenic VOC emissions calculated by the MEGAN model over the last 30 years
journal, January 2014

  • Sindelarova, K.; Granier, C.; Bouarar, I.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 17
  • DOI: 10.5194/acp-14-9317-2014

The AeroCom evaluation and intercomparison of organic aerosol in global models
journal, January 2014

  • Tsigaridis, K.; Daskalakis, N.; Kanakidou, M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 19
  • DOI: 10.5194/acp-14-10845-2014

The Model of Emissions of Gases and Aerosols from Nature version 2.1 (MEGAN2.1): an extended and updated framework for modeling biogenic emissions
journal, January 2012

  • Guenther, A. B.; Jiang, X.; Heald, C. L.
  • Geoscientific Model Development, Vol. 5, Issue 6
  • DOI: 10.5194/gmd-5-1471-2012

Photolytic Aging of Secondary Organic Aerosol: Evidence for a Substantial Photo-Recalcitrant Fraction
journal, June 2019


Characterizing the Aging of Biomass Burning Organic Aerosol by Use of Mixing Ratios: A Meta-analysis of Four Regions
journal, November 2012

  • Jolleys, Matthew D.; Coe, Hugh; McFiggans, Gordon
  • Environmental Science & Technology, Vol. 46, Issue 24
  • DOI: 10.1021/es302386v

Aircraft observations of the chemical composition and aging of aerosol in the Manaus urban plume during GoAmazon 2014/5
journal, January 2018

  • Shilling, John E.; Pekour, Mikhail S.; Fortner, Edward C.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 14
  • DOI: 10.5194/acp-18-10773-2018

Historic global biomass burning emissions for CMIP6 (BB4CMIP) based on merging satellite observations with proxies and fire models (1750–2015)
journal, January 2017

  • van Marle, Margreet J. E.; Kloster, Silvia; Magi, Brian I.
  • Geoscientific Model Development, Vol. 10, Issue 9
  • DOI: 10.5194/gmd-10-3329-2017

Implications of RCP emissions on future concentration and direct radiative forcing of secondary organic aerosol over China
journal, November 2018


Comparison of aircraft measurements during GoAmazon2014/5 and ACRIDICON-CHUVA
journal, January 2020

  • Mei, Fan; Wang, Jian; Comstock, Jennifer M.
  • Atmospheric Measurement Techniques, Vol. 13, Issue 2
  • DOI: 10.5194/amt-13-661-2020

A review of biomass burning emissions part II: intensive physical properties of biomass burning particles
journal, January 2005

  • Reid, J. S.; Koppmann, R.; Eck, T. F.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 3
  • DOI: 10.5194/acp-5-799-2005

Direct Photolysis of α-Pinene Ozonolysis Secondary Organic Aerosol: Effect on Particle Mass and Peroxide Content
journal, September 2014

  • Epstein, Scott A.; Blair, Sandra L.; Nizkorodov, Sergey A.
  • Environmental Science & Technology, Vol. 48, Issue 19
  • DOI: 10.1021/es502350u

Volatility and lifetime against OH heterogeneous reaction of ambient isoprene-epoxydiols-derived secondary organic aerosol (IEPOX-SOA)
journal, January 2016

  • Hu, Weiwei; Palm, Brett B.; Day, Douglas A.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 18
  • DOI: 10.5194/acp-16-11563-2016

The Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) mission: design, execution, and first results
journal, January 2010

  • Jacob, D. J.; Crawford, J. H.; Maring, H.
  • Atmospheric Chemistry and Physics, Vol. 10, Issue 11
  • DOI: 10.5194/acp-10-5191-2010

Particle mass yield in secondary organic aerosol formed by the dark ozonolysis of α-pinene
journal, January 2008

  • Shilling, J. E.; Chen, Q.; King, S. M.
  • Atmospheric Chemistry and Physics, Vol. 8, Issue 7
  • DOI: 10.5194/acp-8-2073-2008

Hydrocarbon-like and oxygenated organic aerosols in Pittsburgh: insights into sources and processes of organic aerosols
journal, January 2005

  • Zhang, Q.; Worsnop, D. R.; Canagaratna, M. R.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 12
  • DOI: 10.5194/acp-5-3289-2005

Urban pollution greatly enhances formation of natural aerosols over the Amazon rainforest
journal, March 2019


O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry
journal, June 2008

  • Aiken, Allison C.; DeCarlo, Peter F.; Kroll, Jesse H.
  • Environmental Science & Technology, Vol. 42, Issue 12
  • DOI: 10.1021/es703009q

Photodegradation of Secondary Organic Aerosol Material Quantified with a Quartz Crystal Microbalance
journal, May 2018

  • Malecha, Kurtis T.; Cai, Zicheng; Nizkorodov, Sergey A.
  • Environmental Science & Technology Letters, Vol. 5, Issue 6
  • DOI: 10.1021/acs.estlett.8b00231

CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model
journal, January 2012

  • Lamarque, J. -F.; Emmons, L. K.; Hess, P. G.
  • Geoscientific Model Development, Vol. 5, Issue 2
  • DOI: 10.5194/gmd-5-369-2012

Species Contributions to PM2.5 Mass Concentrations: Revisiting Common Assumptions for Estimating Organic Mass
journal, January 2001

  • Turpin, Barbara J.; Lim, Ho-Jin
  • Aerosol Science and Technology, Vol. 35, Issue 1
  • DOI: 10.1080/02786820119445

Organic aerosol and global climate modelling: a review
journal, January 2005

  • Kanakidou, M.; Seinfeld, J. H.; Pandis, S. N.
  • Atmospheric Chemistry and Physics, Vol. 5, Issue 4
  • DOI: 10.5194/acp-5-1053-2005

Satellite observations cap the atmospheric organic aerosol budget: FRONTIER
journal, December 2010

  • Heald, Colette L.; Ridley, David A.; Kreidenweis, Sonia M.
  • Geophysical Research Letters, Vol. 37, Issue 24
  • DOI: 10.1029/2010GL045095

Characterization of a real-time tracer for isoprene epoxydiols-derived secondary organic aerosol (IEPOX-SOA) from aerosol mass spectrometer measurements
journal, January 2015

  • Hu, W. W.; Campuzano-Jost, P.; Palm, B. B.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 20
  • DOI: 10.5194/acp-15-11807-2015

The impact of biogenic, anthropogenic, and biomass burning volatile organic compound emissions on regional and seasonal variations in secondary organic aerosol
journal, January 2018

  • Kelly, Jamie M.; Doherty, Ruth M.; O'Connor, Fiona M.
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 10
  • DOI: 10.5194/acp-18-7393-2018

Evolution of Organic Aerosols in the Atmosphere
journal, December 2009


Carbon oxidation state as a metric for describing the chemistry of atmospheric organic aerosol
journal, January 2011

  • Kroll, Jesse H.; Donahue, Neil M.; Jimenez, Jose L.
  • Nature Chemistry, Vol. 3, Issue 2
  • DOI: 10.1038/nchem.948

Direct radiative forcing of anthropogenic organic aerosol
journal, January 2005

  • Ming, Yi; Ramaswamy, V.; Ginoux, Paul A.
  • Journal of Geophysical Research, Vol. 110, Issue D20
  • DOI: 10.1029/2004JD005573

Formation of Secondary Organic Aerosols Through Photooxidation of Isoprene
journal, February 2004


An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
journal, August 2019

  • Rasch, P. J.; Xie, S.; Ma, P. ‐L.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 8
  • DOI: 10.1029/2019MS001629

ACRIDICON–CHUVA Campaign: Studying Tropical Deep Convective Clouds and Precipitation over Amazonia Using the New German Research Aircraft HALO
journal, October 2016

  • Wendisch, Manfred; Pöschl, Ulrich; Andreae, Meinrat O.
  • Bulletin of the American Meteorological Society, Vol. 97, Issue 10
  • DOI: 10.1175/BAMS-D-14-00255.1

Biogenic SOA formation through gas-phase oxidation and gas-to-particle partitioning – a comparison between process models of varying complexity
journal, January 2014

  • Hermansson, E.; Roldin, P.; Rusanen, A.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 21
  • DOI: 10.5194/acp-14-11853-2014

Black carbon lofts wildfire smoke high into the stratosphere to form a persistent plume
journal, August 2019


Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom
journal, January 2006

  • Dentener, F.; Kinne, S.; Bond, T.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 12
  • DOI: 10.5194/acp-6-4321-2006

Modelled radiative forcing of the direct aerosol effect with multi-observation evaluation
journal, January 2009

  • Myhre, G.; Berglen, T. F.; Johnsrud, M.
  • Atmospheric Chemistry and Physics, Vol. 9, Issue 4
  • DOI: 10.5194/acp-9-1365-2009

Evolution of trace gases and particles emitted by a chaparral fire in California
journal, January 2012

  • Akagi, S. K.; Craven, J. S.; Taylor, J. W.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 3
  • DOI: 10.5194/acp-12-1397-2012

Improving organic aerosol treatments in CESM / CAM 5: Development, application, and evaluation
journal, May 2017

  • Glotfelty, Timothy; He, Jian; Zhang, Yang
  • Journal of Advances in Modeling Earth Systems, Vol. 9, Issue 2
  • DOI: 10.1002/2016MS000874

Photochemical Aging of α-Pinene Secondary Organic Aerosol: Effects of OH Radical Sources and Photolysis
journal, February 2012

  • Henry, Kaytlin M.; Donahue, Neil M.
  • The Journal of Physical Chemistry A, Vol. 116, Issue 24
  • DOI: 10.1021/jp210288s

The Present and Future of Secondary Organic Aerosol Direct Forcing on Climate
journal, March 2018


Regional influence of wildfires on aerosol chemistry in the western US and insights into atmospheric aging of biomass burning organic aerosol
journal, January 2017

  • Zhou, Shan; Collier, Sonya; Jaffe, Daniel A.
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 3
  • DOI: 10.5194/acp-17-2477-2017

Premature Mortality Attributable to Particulate Matter in China: Source Contributions and Responses to Reductions
journal, August 2017

  • Hu, Jianlin; Huang, Lin; Chen, Mindong
  • Environmental Science & Technology, Vol. 51, Issue 17
  • DOI: 10.1021/acs.est.7b03193

Particulate air pollution from wildfires in the Western US under climate change
journal, July 2016

  • Liu, Jia Coco; Mickley, Loretta J.; Sulprizio, Melissa P.
  • Climatic Change, Vol. 138, Issue 3-4
  • DOI: 10.1007/s10584-016-1762-6

Exploring the vertical profile of atmospheric organic aerosol: comparing 17 aircraft field campaigns with a global model
journal, January 2011


Functionalization and fragmentation during ambient organic aerosol aging: application of the 2-D volatility basis set to field studies
journal, January 2012

  • Murphy, B. N.; Donahue, N. M.; Fountoukis, C.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 22
  • DOI: 10.5194/acp-12-10797-2012

Effects of aging on organic aerosol from open biomass burning smoke in aircraft and laboratory studies
journal, January 2011

  • Cubison, M. J.; Ortega, A. M.; Hayes, P. L.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 23
  • DOI: 10.5194/acp-11-12049-2011

Intercomparison of biomass burning aerosol optical properties from in situ and remote-sensing instruments in ORACLES-2016
journal, January 2019

  • Pistone, Kristina; Redemann, Jens; Doherty, Sarah
  • Atmospheric Chemistry and Physics, Vol. 19, Issue 14
  • DOI: 10.5194/acp-19-9181-2019

Atmospheric Degradation of Volatile Organic Compounds
journal, December 2003

  • Atkinson, Roger; Arey, Janet
  • Chemical Reviews, Vol. 103, Issue 12
  • DOI: 10.1021/cr0206420

Causes and consequences of decreasing atmospheric organic aerosol in the United States
journal, December 2017

  • Ridley, D. A.; Heald, C. L.; Ridley, K. J.
  • Proceedings of the National Academy of Sciences, Vol. 115, Issue 2
  • DOI: 10.1073/pnas.1700387115

Evolution of brown carbon in wildfire plumes
journal, June 2015

  • Forrister, Haviland; Liu, Jiumeng; Scheuer, Eric
  • Geophysical Research Letters, Vol. 42, Issue 11
  • DOI: 10.1002/2015GL063897

Chemistry of secondary organic aerosol: Formation and evolution of low-volatility organics in the atmosphere
journal, May 2008


Estimates of global terrestrial isoprene emissions using MEGAN (Model of Emissions of Gases and Aerosols from Nature)
journal, January 2006

  • Guenther, A.; Karl, T.; Harley, P.
  • Atmospheric Chemistry and Physics, Vol. 6, Issue 11
  • DOI: 10.5194/acp-6-3181-2006

Connections Between Clouds, Radiation, and Midlatitude Dynamics: a Review
journal, April 2015


Mie Scattering Captures Observed Optical Properties of Ambient Biomass Burning Plumes Assuming Uniform Black, Brown, and Organic Carbon Mixtures
journal, November 2019

  • Chylek, Petr; Lee, James E.; Romonosky, Dian E.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 21
  • DOI: 10.1029/2019JD031224

Influence of Emissions and Aqueous Processing on Particles Containing Black Carbon in a Polluted Urban Environment: Insights From a Soot Particle-Aerosol Mass Spectrometer
journal, June 2018

  • Collier, Sonya; Williams, Leah R.; Onasch, Timothy B.
  • Journal of Geophysical Research: Atmospheres, Vol. 123, Issue 12
  • DOI: 10.1002/2017JD027851

More Than Emissions and Chemistry: Fire Size, Dilution, and Background Aerosol Also Greatly Influence Near‐Field Biomass Burning Aerosol Aging
journal, May 2019

  • Hodshire, A. L.; Bian, Q.; Ramnarine, E.
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 10
  • DOI: 10.1029/2018JD029674

Sources and Secondary Production of Organic Aerosols in the Northeastern United States during WINTER
journal, July 2018

  • Schroder, J. C.; Campuzano-Jost, P.; Day, D. A.
  • Journal of Geophysical Research: Atmospheres
  • DOI: 10.1029/2018JD028475

Global transformation and fate of SOA: Implications of low-volatility SOA and gas-phase fragmentation reactions: Global Modeling of SOA
journal, May 2015

  • Shrivastava, Manish; Easter, Richard C.; Liu, Xiaohong
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 9
  • DOI: 10.1002/2014JD022563

Implications of low volatility SOA and gas-phase fragmentation reactions on SOA loadings and their spatial and temporal evolution in the atmosphere: LOW VOLATILITY SOA AND GAS FRAGMENTATION
journal, April 2013

  • Shrivastava, Manish; Zelenyuk, Alla; Imre, Dan
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 8
  • DOI: 10.1002/jgrd.50160