skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Crystal Structure and Melting of Fe Shock Compressed to 273 GPa: In Situ X-Ray Diffraction

Abstract

Despite extensive shock wave and static compression experiments and corresponding theoretical work, consensus on the crystal structure and the melt boundary of Fe at Earth’s core conditions is lacking. We present in situ x-ray diffraction measurements in laser-shock compressed Fe that establish the stability of the hexagonal-close-packed (hcp) structure along the Hugoniot through shock melting, which occurs between ~242 to ~247 GPa. Using previously reported hcp Fe Hugoniot temperatures, the melt temperature is estimated to be 5560(360) K at 242 GPa, consistent with several reported Fe melt curves. Extrapolation of this value suggests ~6400 K melt temperature at Earth’s inner core boundary pressure.

Authors:
 [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Washington State Univ., Pullman, WA (United States)
Publication Date:
Research Org.:
Washington State Univ., Pullman, WA (United States). Inst. for Shock Physics
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA), Office of Defense Programs (DP); USDOE Office of Science (SC), Basic Energy Sciences (BES). Scientific User Facilities Division
OSTI Identifier:
1728707
Alternate Identifier(s):
OSTI ID: 1728710; OSTI ID: 1729906
Grant/Contract Number:  
NA0002007; AC02-06CH11357; NA0003957; NA0002442
Resource Type:
Accepted Manuscript
Journal Name:
Physical Review Letters
Additional Journal Information:
Journal Volume: 125; Journal Issue: 21; Journal ID: ISSN 0031-9007
Publisher:
American Physical Society (APS)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY; Crystal melting; Earth's interior; Phase diagrams; Shock waves; Solid-solid transformations; X-ray powder diffraction

Citation Formats

Turneaure, Stefan  J., Sharma, Surinder M., and Gupta, Y. M.. Crystal Structure and Melting of Fe Shock Compressed to 273 GPa: In Situ X-Ray Diffraction. United States: N. p., 2020. Web. https://doi.org/10.1103/physrevlett.125.215702.
Turneaure, Stefan  J., Sharma, Surinder M., & Gupta, Y. M.. Crystal Structure and Melting of Fe Shock Compressed to 273 GPa: In Situ X-Ray Diffraction. United States. https://doi.org/10.1103/physrevlett.125.215702
Turneaure, Stefan  J., Sharma, Surinder M., and Gupta, Y. M.. Wed . "Crystal Structure and Melting of Fe Shock Compressed to 273 GPa: In Situ X-Ray Diffraction". United States. https://doi.org/10.1103/physrevlett.125.215702. https://www.osti.gov/servlets/purl/1728707.
@article{osti_1728707,
title = {Crystal Structure and Melting of Fe Shock Compressed to 273 GPa: In Situ X-Ray Diffraction},
author = {Turneaure, Stefan  J. and Sharma, Surinder M. and Gupta, Y. M.},
abstractNote = {Despite extensive shock wave and static compression experiments and corresponding theoretical work, consensus on the crystal structure and the melt boundary of Fe at Earth’s core conditions is lacking. We present in situ x-ray diffraction measurements in laser-shock compressed Fe that establish the stability of the hexagonal-close-packed (hcp) structure along the Hugoniot through shock melting, which occurs between ~242 to ~247 GPa. Using previously reported hcp Fe Hugoniot temperatures, the melt temperature is estimated to be 5560(360) K at 242 GPa, consistent with several reported Fe melt curves. Extrapolation of this value suggests ~6400 K melt temperature at Earth’s inner core boundary pressure.},
doi = {10.1103/physrevlett.125.215702},
journal = {Physical Review Letters},
number = 21,
volume = 125,
place = {United States},
year = {2020},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Earth's Core and the Geodynamo
journal, June 2000


Anisotropy of the inner core from differential travel times of the phases PKP and PKIKP
journal, March 1992


Elastic Anisotropy of Earth's Inner Core
journal, February 2008


The Structure of Iron in Earth's Inner Core
journal, October 2010


Stabilization of body-centred cubic iron under inner-core conditions
journal, February 2017

  • Belonoshko, Anatoly B.; Lukinov, Timofei; Fu, Jie
  • Nature Geoscience, Vol. 10, Issue 4
  • DOI: 10.1038/ngeo2892

Polymorphism of Iron at High Pressure
journal, March 1956

  • Bancroft, Dennison; Peterson, Eric L.; Minshall, Stanley
  • Journal of Applied Physics, Vol. 27, Issue 3
  • DOI: 10.1063/1.1722359

The effect of pressure on the volume and lattice parameters of ruthenium and iron
journal, August 1964


Phase transitions, Grüneisen parameter, and elasticity for shocked iron between 77 GPa and 400 GPa
journal, June 1986

  • Brown, J. Michael; McQueen, Robert G.
  • Journal of Geophysical Research: Solid Earth, Vol. 91, Issue B7
  • DOI: 10.1029/JB091iB07p07485

Melting of iron at the physical conditions of the Earth's core
journal, January 2004


The equation of state of iron to 450 GPa: Another high pressure solid phase?
journal, November 2001


Shock temperatures and melting of iron at Earth core conditions
journal, June 1993


Shock Melting Curve of Iron: A Consensus on the Temperature at the Earth's Inner Core Boundary
journal, August 2020

  • Li, Jun; Wu, Qiang; Li, Jiabo
  • Geophysical Research Letters, Vol. 47, Issue 15
  • DOI: 10.1029/2020GL087758

Direct Observation of the α ε Transition in Shock-Compressed Iron via Nanosecond X-Ray Diffraction
journal, August 2005


High-pressure nanocrystalline structure of a shock-compressed single crystal of iron
journal, December 2008

  • Hawreliak, James A.; Kalantar, Daniel H.; Stölken, James S.
  • Physical Review B, Vol. 78, Issue 22
  • DOI: 10.1103/PhysRevB.78.220101

In situ x-ray diffraction measurements of the c / a ratio in the high-pressure ε phase of shock-compressed polycrystalline iron
journal, April 2011


Subnanosecond phase transition dynamics in laser-shocked iron
journal, June 2020


Dynamic X-ray diffraction observation of shocked solid iron up to 170 GPa
journal, June 2016

  • Denoeud, Adrien; Ozaki, Norimasa; Benuzzi-Mounaix, Alessandra
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 28
  • DOI: 10.1073/pnas.1512127113

X-ray absorption spectroscopy of iron at multimegabar pressures in laser shock experiments
journal, July 2015


Solid Iron Compressed Up to 560 GPa
journal, August 2013


Melting of Iron at Earth's Inner Core Boundary Based on Fast X-ray Diffraction
journal, April 2013


Solving Controversies on the Iron Phase Diagram Under High Pressure
journal, October 2018

  • Morard, Guillaume; Boccato, Silvia; Rosa, Angelika D.
  • Geophysical Research Letters, Vol. 45, Issue 20
  • DOI: 10.1029/2018GL079950

Melting curve of iron to 290 GPa determined in a resistance-heated diamond-anvil cell
journal, March 2019


Synchrotron X-ray Study of Iron at High Pressure and Temperature
journal, September 1995


Phase Diagram of Iron by in Situ X-ray Diffraction: Implications for Earth's Core
journal, December 1995


In Situ X-Ray Study of Thermal Expansion and Phase Transition of Iron at Multimegabar Pressure
journal, February 2000


Pure Iron Compressed and Heated to Extreme Conditions
journal, October 2007


Quenching of bcc-Fe from high to room temperature at high-pressure conditions: a molecular dynamics simulation
journal, September 2009


Theory of the iron phase diagram at Earth core conditions
journal, January 1990

  • Ross, Marvin; Young, David A.; Grover, Richard
  • Journal of Geophysical Research, Vol. 95, Issue B13
  • DOI: 10.1029/JB095iB13p21713

Stability of the body-centred-cubic phase of iron in the Earth's inner core
journal, August 2003

  • Belonoshko, Anatoly B.; Ahuja, Rajeev; Johansson, Börje
  • Nature, Vol. 424, Issue 6952
  • DOI: 10.1038/nature01954

En las condiciones del núcleo de la Tierra, ¿tiene el hierro una estructura hcp?
journal, January 1970


Thermal properties of iron at high pressures and temperatures
journal, April 1996

  • Wasserman, Evgeny; Stixrude, Lars; Cohen, Ronald E.
  • Physical Review B, Vol. 53, Issue 13
  • DOI: 10.1103/PhysRevB.53.8296

Thermodynamics of hexagonal-close-packed iron under Earth’s core conditions
journal, July 2001


First-principles thermal equation of state and thermoelasticity of hcp Fe at high pressures
journal, March 2010


The laser shock station in the dynamic compression sector. I
journal, May 2019

  • Wang, Xiaoming; Rigg, Paulo; Sethian, John
  • Review of Scientific Instruments, Vol. 90, Issue 5
  • DOI: 10.1063/1.5088367

Laser interferometer for measuring high velocities of any reflecting surface
journal, November 1972

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 43, Issue 11
  • DOI: 10.1063/1.1660986

Hugoniot data for iron
journal, November 2000

  • Brown, J. M.; Fritz, J. N.; Hixson, R. S.
  • Journal of Applied Physics, Vol. 88, Issue 9
  • DOI: 10.1063/1.1319320

Sound velocity, equation of state, temperature and melting of LiF single crystals under shock compression
journal, January 2015

  • Liu, Qiancheng; Zhou, Xianming; Zeng, Xiaolong
  • Journal of Applied Physics, Vol. 117, Issue 4
  • DOI: 10.1063/1.4906558

Two-dimensional detector software: From real detector to idealised image or two-theta scan
journal, January 1996

  • Hammersley, A. P.; Svensson, S. O.; Hanfland, M.
  • High Pressure Research, Vol. 14, Issue 4-6, p. 235-248
  • DOI: 10.1080/08957959608201408

The electronic band structures of iron, sulfur, and oxygen at high pressures and the Earth's core
journal, January 1990


Probing local and electronic structure in Warm Dense Matter: single pulse synchrotron x-ray absorption spectroscopy on shocked Fe
journal, June 2016

  • Torchio, Raffaella; Occelli, Florent; Mathon, Olivier
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep26402

Shock wave study of the α ⇄ ε phase transition in iron
journal, November 1974

  • Barker, L. M.; Hollenbach, R. E.
  • Journal of Applied Physics, Vol. 45, Issue 11
  • DOI: 10.1063/1.1663148

Iron under Earth’s core conditions: Liquid-state thermodynamics and high-pressure melting curve from ab initio calculations
journal, April 2002


Melting properties from ab initio free energy calculations: Iron at the Earth's inner-core boundary
journal, December 2018


Melting of Iron under Earth’s Core Conditions from Diffusion Monte Carlo Free Energy Calculations
journal, August 2009


Physics of Iron at Earth's Core Conditions
journal, February 2000