skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Understanding processes that control dust spatial distributions with global climate models and satellite observations

Abstract

Dust aerosol is important in modulating the climate system at local and global scales, yet its spatiotemporal distributions simulated by global climate models (GCMs) are highly uncertain. In this study, we evaluate the spatiotemporal variations of dust extinction profiles and dust optical depth (DOD) simulated by the Community Earth System Model version 1 (CESM1) and version 2 (CESM2), the Energy Exascale Earth System Model version 1 (E3SMv1), and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) against satellite retrievals from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multi-angle Imaging SpectroRadiometer (MISR). We find that CESM1, CESM2, and E3SMv1 underestimate dust transport to remote regions. E3SMv1 performs better than CESM1 and CESM2 in simulating dust transport and the northern hemispheric DOD due to its higher mass fraction of fine dust. CESM2 performs the worst in the Northern Hemisphere due to its lower dust emission than in the other two models but has a better dust simulation over the Southern Ocean due to the overestimation of dust emission in the Southern Hemisphere. DOD from MERRA-2 agrees well with CALIOP DOD in remote regions due to its higher mass fraction of fine dust and themore » assimilation of aerosol optical depth. The large disagreements in the dust extinction profiles and DOD among CALIOP, MODIS, and MISR retrievals make the model evaluation of dust spatial distributions challenging. Our study indicates the importance of representing dust emission, dry/wet deposition, and size distribution in GCMs in correctly simulating dust spatiotemporal distributions.« less

Authors:
ORCiD logo [1];  [2];  [3]; ORCiD logo [4]; ORCiD logo [2];  [5];  [3]; ORCiD logo [6];  [5]; ORCiD logo [6]; ORCiD logo [7];  [2]
  1. Univ. of Wyoming, Laramie, WY (United States); Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  2. Univ. of Wyoming, Laramie, WY (United States); Texas A & M Univ., College Station, TX (United States)
  3. NASA Goddard Space Flight Center (GSFC), Greenbelt, MD (United States)
  4. Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
  5. Univ. of Colorado, Boulder, CO (United States)
  6. Univ. of Wyoming, Laramie, WY (United States)
  7. Argonne National Lab. (ANL), Argonne, IL (United States)
Publication Date:
Research Org.:
Pacific Northwest National Lab. (PNNL), Richland, WA (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Biological and Environmental Research (BER); National Aeronautics and Space Administration (NASA)
OSTI Identifier:
1725865
Report Number(s):
PNNL-SA-151334
Journal ID: ISSN 1680-7324
Grant/Contract Number:  
AC05-76RL01830; AC02-05CH11231; NNX16AO94G; 80NSSC20K0952
Resource Type:
Accepted Manuscript
Journal Name:
Atmospheric Chemistry and Physics (Online)
Additional Journal Information:
Journal Name: Atmospheric Chemistry and Physics (Online); Journal Volume: 20; Journal Issue: 22; Journal ID: ISSN 1680-7324
Publisher:
European Geosciences Union
Country of Publication:
United States
Language:
English
Subject:
54 ENVIRONMENTAL SCIENCES

Citation Formats

Wu, Mingxuan, Liu, Xiaohong, Yu, Hongbin, Wang, Hailong, Shi, Yang, Yang, Kang, Darmenov, Anton, Wu, Chenglai, Wang, Zhien, Luo, Tao, Feng, Yan, and Ke, Ziming. Understanding processes that control dust spatial distributions with global climate models and satellite observations. United States: N. p., 2020. Web. https://doi.org/10.5194/acp-20-13835-2020.
Wu, Mingxuan, Liu, Xiaohong, Yu, Hongbin, Wang, Hailong, Shi, Yang, Yang, Kang, Darmenov, Anton, Wu, Chenglai, Wang, Zhien, Luo, Tao, Feng, Yan, & Ke, Ziming. Understanding processes that control dust spatial distributions with global climate models and satellite observations. United States. https://doi.org/10.5194/acp-20-13835-2020
Wu, Mingxuan, Liu, Xiaohong, Yu, Hongbin, Wang, Hailong, Shi, Yang, Yang, Kang, Darmenov, Anton, Wu, Chenglai, Wang, Zhien, Luo, Tao, Feng, Yan, and Ke, Ziming. Tue . "Understanding processes that control dust spatial distributions with global climate models and satellite observations". United States. https://doi.org/10.5194/acp-20-13835-2020. https://www.osti.gov/servlets/purl/1725865.
@article{osti_1725865,
title = {Understanding processes that control dust spatial distributions with global climate models and satellite observations},
author = {Wu, Mingxuan and Liu, Xiaohong and Yu, Hongbin and Wang, Hailong and Shi, Yang and Yang, Kang and Darmenov, Anton and Wu, Chenglai and Wang, Zhien and Luo, Tao and Feng, Yan and Ke, Ziming},
abstractNote = {Dust aerosol is important in modulating the climate system at local and global scales, yet its spatiotemporal distributions simulated by global climate models (GCMs) are highly uncertain. In this study, we evaluate the spatiotemporal variations of dust extinction profiles and dust optical depth (DOD) simulated by the Community Earth System Model version 1 (CESM1) and version 2 (CESM2), the Energy Exascale Earth System Model version 1 (E3SMv1), and the Modern-Era Retrospective analysis for Research and Applications version 2 (MERRA-2) against satellite retrievals from Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP), Moderate Resolution Imaging Spectroradiometer (MODIS), and Multi-angle Imaging SpectroRadiometer (MISR). We find that CESM1, CESM2, and E3SMv1 underestimate dust transport to remote regions. E3SMv1 performs better than CESM1 and CESM2 in simulating dust transport and the northern hemispheric DOD due to its higher mass fraction of fine dust. CESM2 performs the worst in the Northern Hemisphere due to its lower dust emission than in the other two models but has a better dust simulation over the Southern Ocean due to the overestimation of dust emission in the Southern Hemisphere. DOD from MERRA-2 agrees well with CALIOP DOD in remote regions due to its higher mass fraction of fine dust and the assimilation of aerosol optical depth. The large disagreements in the dust extinction profiles and DOD among CALIOP, MODIS, and MISR retrievals make the model evaluation of dust spatial distributions challenging. Our study indicates the importance of representing dust emission, dry/wet deposition, and size distribution in GCMs in correctly simulating dust spatiotemporal distributions.},
doi = {10.5194/acp-20-13835-2020},
journal = {Atmospheric Chemistry and Physics (Online)},
number = 22,
volume = 20,
place = {United States},
year = {2020},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The vertical distribution of black carbon in CMIP5 models: Comparison to observations and the importance of convective transport
journal, April 2014

  • Allen, Robert J.; Landuyt, William
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 8
  • DOI: 10.1002/2014JD021595

Optimizing CALIPSO Saharan dust retrievals
journal, January 2013

  • Amiridis, V.; Wandinger, U.; Marinou, E.
  • Atmospheric Chemistry and Physics, Vol. 13, Issue 23
  • DOI: 10.5194/acp-13-12089-2013

Testing the MODIS satellite retrieval of aerosol fine-mode fraction
journal, January 2005

  • Anderson, Theodore L.
  • Journal of Geophysical Research, Vol. 110, Issue D18
  • DOI: 10.1029/2005JD005978

Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A
journal, January 1996

  • Arimoto, R.; Duce, R. A.; Savoie, D. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D1
  • DOI: 10.1029/95JD01071

Do MODIS‐defined dust sources have a geomorphological signature?
journal, March 2016

  • Baddock, Matthew C.; Ginoux, Paul; Bullard, Joanna E.
  • Geophysical Research Letters, Vol. 43, Issue 6
  • DOI: 10.1002/2015GL067327

Reevaluation of Mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data
journal, January 2007

  • Balkanski, Y.; Schulz, M.; Claquin, T.
  • Atmospheric Chemistry and Physics, Vol. 7, Issue 1
  • DOI: 10.5194/acp-7-81-2007

Higher-Order Turbulence Closure and Its Impact on Climate Simulations in the Community Atmosphere Model
journal, December 2013

  • Bogenschutz, Peter A.; Gettelman, Andrew; Morrison, Hugh
  • Journal of Climate, Vol. 26, Issue 23
  • DOI: 10.1175/JCLI-D-13-00075.1

Evaluating nighttime CALIOP 0.532 μm aerosol optical depth and extinction coefficient retrievals
journal, January 2012

  • Campbell, J. R.; Tackett, J. L.; Reid, J. S.
  • Atmospheric Measurement Techniques, Vol. 5, Issue 9
  • DOI: 10.5194/amt-5-2143-2012

The Community Earth System Model Version 2 (CESM2)
journal, February 2020

  • Danabasoglu, G.; Lamarque, J. ‐F.; Bacmeister, J.
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 2
  • DOI: 10.1029/2019MS001916

African dust aerosols as atmospheric ice nuclei: AFRICAN DUST AEROSOLS AS ICE NUCLEI
journal, July 2003

  • DeMott, Paul J.; Sassen, Kenneth; Poellot, Michael R.
  • Geophysical Research Letters, Vol. 30, Issue 14
  • DOI: 10.1029/2003GL017410

Role of mineral aerosol as a reactive surface in the global troposphere
journal, October 1996

  • Dentener, Frank J.; Carmichael, Gregory R.; Zhang, Yang
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D17
  • DOI: 10.1029/96JD01818

An analysis of aeolian dust in climate models: AEOLIAN DUST IN CMIP5
journal, August 2014

  • Evan, Amato T.; Flamant, Cyrille; Fiedler, Stephanie
  • Geophysical Research Letters, Vol. 41, Issue 16
  • DOI: 10.1002/2014GL060545

Modeling of observed mineral dust aerosols in the arctic and the impact on winter season low-level clouds: DUST AND LOW-LEVEL CLOUDS IN THE ARCTIC
journal, October 2013

  • Fan, Song-Miao
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 19
  • DOI: 10.1002/jgrd.50842

Introducing the 4.4 km spatial resolution Multi-Angle Imaging SpectroRadiometer (MISR) aerosol product
journal, January 2020

  • Garay, Michael J.; Witek, Marcin L.; Kahn, Ralph A.
  • Atmospheric Measurement Techniques, Vol. 13, Issue 2
  • DOI: 10.5194/amt-13-593-2020

The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2)
journal, July 2017


Advanced Two-Moment Bulk Microphysics for Global Models. Part I: Off-Line Tests and Comparison with Other Schemes
journal, February 2015


Sources and distributions of dust aerosols simulated with the GOCART model
journal, September 2001

  • Ginoux, Paul; Chin, Mian; Tegen, Ina
  • Journal of Geophysical Research: Atmospheres, Vol. 106, Issue D17
  • DOI: 10.1029/2000JD000053

The DOE E3SM Coupled Model Version 1: Overview and Evaluation at Standard Resolution
journal, July 2019

  • Golaz, Jean‐Christophe; Caldwell, Peter M.; Van Roekel, Luke P.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 7
  • DOI: 10.1029/2018MS001603

Substantial contribution of northern high-latitude sources to mineral dust in the Arctic: Mineral Dust in the Arctic
journal, November 2016

  • Groot Zwaaftink, C. D.; Grythe, H.; Skov, H.
  • Journal of Geophysical Research: Atmospheres, Vol. 121, Issue 22
  • DOI: 10.1002/2016JD025482

Enhanced Deep Blue aerosol retrieval algorithm: The second generation: ENHANCED DEEP BLUE AEROSOL RETRIEVAL
journal, August 2013

  • Hsu, N. C.; Jeong, M. -J.; Bettenhausen, C.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 16
  • DOI: 10.1002/jgrd.50712

Global dust model intercomparison in AeroCom phase I
journal, January 2011

  • Huneeus, N.; Schulz, M.; Balkanski, Y.
  • Atmospheric Chemistry and Physics, Vol. 11, Issue 15
  • DOI: 10.5194/acp-11-7781-2011

The Community Earth System Model: A Framework for Collaborative Research
journal, September 2013

  • Hurrell, James W.; Holland, M. M.; Gent, P. R.
  • Bulletin of the American Meteorological Society, Vol. 94, Issue 9
  • DOI: 10.1175/BAMS-D-12-00121.1

Global Iron Connections Between Desert Dust, Ocean Biogeochemistry, and Climate
journal, April 2005


A global comparison of GEOS-Chem-predicted and remotely-sensed mineral dust aerosol optical depth and extinction profiles: COMPARING MODEL-PREDICTED AND REMOTELY-SENSED DUST AODs
journal, March 2012

  • Johnson, Matthew S.; Meskhidze, Nicholas; Praju Kiliyanpilakkil, Velayudhan
  • Journal of Advances in Modeling Earth Systems, Vol. 4, Issue 3
  • DOI: 10.1029/2011MS000109

Sources, sinks, and transatlantic transport of North African dust aerosol: A multimodel analysis and comparison with remote sensing data
journal, May 2014

  • Kim, Dongchul; Chin, Mian; Yu, Hongbin
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 10
  • DOI: 10.1002/2013JD021099

The CALIPSO version 4 automated aerosol classification and lidar ratio selection algorithm
journal, January 2018

  • Kim, Man-Hae; Omar, Ali H.; Tackett, Jason L.
  • Atmospheric Measurement Techniques, Vol. 11, Issue 11
  • DOI: 10.5194/amt-11-6107-2018

A scaling theory for the size distribution of emitted dust aerosols suggests climate models underestimate the size of the global dust cycle
journal, December 2010


An improved dust emission model – Part 1: Model description and comparison against measurements
journal, January 2014

  • Kok, J. F.; Mahowald, N. M.; Fratini, G.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 23
  • DOI: 10.5194/acp-14-13023-2014

An improved dust emission model – Part 2: Evaluation in the Community Earth System Model, with implications for the use of dust source functions
journal, January 2014

  • Kok, J. F.; Albani, S.; Mahowald, N. M.
  • Atmospheric Chemistry and Physics, Vol. 14, Issue 23
  • DOI: 10.5194/acp-14-13043-2014

Smaller desert dust cooling effect estimated from analysis of dust size and abundance
journal, March 2017

  • Kok, Jasper F.; Ridley, David A.; Zhou, Qing
  • Nature Geoscience, Vol. 10, Issue 4
  • DOI: 10.1038/ngeo2912

Exploring systematic offsets between aerosol products from the two MODIS sensors
journal, January 2018

  • Levy, Robert C.; Mattoo, Shana; Sawyer, Virginia
  • Atmospheric Measurement Techniques, Vol. 11, Issue 7
  • DOI: 10.5194/amt-11-4073-2018

Description and evaluation of a new four-mode version of the Modal Aerosol Module (MAM4) within version 5.3 of the Community Atmosphere Model
journal, January 2016


Vertically resolved separation of dust and other aerosol types by a new lidar depolarization method
journal, January 2015

  • Luo, Tao; Wang, Zhien; Ferrare, Richard A.
  • Optics Express, Vol. 23, Issue 11
  • DOI: 10.1364/OE.23.014095

Global dust distribution from improved thin dust layer detection using A-train satellite lidar observations: Improved Global Dust Distribution
journal, January 2015

  • Luo, Tao; Wang, Zhien; Zhang, Damao
  • Geophysical Research Letters, Vol. 42, Issue 2
  • DOI: 10.1002/2014GL062111

Comparison of AOD between CALIPSO and MODIS: significant differences over major dust and biomass burning regions
journal, January 2013

  • Ma, X.; Bartlett, K.; Harmon, K.
  • Atmospheric Measurement Techniques, Vol. 6, Issue 9
  • DOI: 10.5194/amt-6-2391-2013

Study of MPLNET-Derived Aerosol Climatology over Kanpur, India, and Validation of CALIPSO Level 2 Version 3 Backscatter and Extinction Products
journal, September 2012

  • Misra, Amit; Tripathi, S. N.; Kaul, D. S.
  • Journal of Atmospheric and Oceanic Technology, Vol. 29, Issue 9
  • DOI: 10.1175/JTECH-D-11-00162.1

CALIOP and AERONET aerosol optical depth comparisons: One size fits none: CALIOP AND AERONET AOD: ONE SIZE FITS NONE
journal, May 2013

  • Omar, A. H.; Winker, D. M.; Tackett, J. L.
  • Journal of Geophysical Research: Atmospheres, Vol. 118, Issue 10
  • DOI: 10.1002/jgrd.50330

CALIPSO climatological products: evaluation and suggestions from EARLINET
journal, January 2016

  • Papagiannopoulos, Nikolaos; Mona, Lucia; Alados-Arboledas, Lucas
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 4
  • DOI: 10.5194/acp-16-2341-2016

Nine-year spatial and temporal evolution of desert dust aerosols over South and East Asia as revealed by CALIOP
journal, January 2018

  • Proestakis, Emmanouil; Amiridis, Vassilis; Marinou, Eleni
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-1337-2018

High-Latitude Dust Over the North Atlantic: Inputs from Icelandic Proglacial Dust Storms
journal, March 2012


The impact of the Pacific Decadal Oscillation on springtime dust activity in Syria
journal, January 2016


How reliable are CMIP5 models in simulating dust optical depth?
journal, January 2018


An Overview of the Atmospheric Component of the Energy Exascale Earth System Model
journal, August 2019

  • Rasch, P. J.; Xie, S.; Ma, P. ‐L.
  • Journal of Advances in Modeling Earth Systems, Vol. 11, Issue 8
  • DOI: 10.1029/2019MS001629

An observationally constrained estimate of global dust aerosol optical depth
journal, January 2016

  • Ridley, David A.; Heald, Colette L.; Kok, Jasper F.
  • Atmospheric Chemistry and Physics, Vol. 16, Issue 23
  • DOI: 10.5194/acp-16-15097-2016

Desert dust suppressing precipitation: A possible desertification feedback loop
journal, May 2001

  • Rosenfeld, D.; Rudich, Y.; Lahav, R.
  • Proceedings of the National Academy of Sciences, Vol. 98, Issue 11
  • DOI: 10.1073/pnas.101122798

MODIS Collection 6 aerosol products: Comparison between Aqua's e-Deep Blue, Dark Target, and “merged” data sets, and usage recommendations
journal, December 2014

  • Sayer, A. M.; Munchak, L. A.; Hsu, N. C.
  • Journal of Geophysical Research: Atmospheres, Vol. 119, Issue 24
  • DOI: 10.1002/2014JD022453

Modeling dust as component minerals in the Community Atmosphere Model: development of framework and impact on radiative forcing
journal, January 2015

  • Scanza, R. A.; Mahowald, N.; Ghan, S.
  • Atmospheric Chemistry and Physics, Vol. 15, Issue 1
  • DOI: 10.5194/acp-15-537-2015

Comparison of CALIPSO aerosol optical depth retrievals to AERONET measurements, and a climatology for the lidar ratio of dust
journal, January 2012

  • Schuster, G. L.; Vaughan, M.; MacDonnell, D.
  • Atmospheric Chemistry and Physics, Vol. 12, Issue 16
  • DOI: 10.5194/acp-12-7431-2012

Dust Radiative Effects on Climate by Glaciating Mixed‐Phase Clouds
journal, June 2019

  • Shi, Yang; Liu, Xiaohong
  • Geophysical Research Letters, Vol. 46, Issue 11
  • DOI: 10.1029/2019GL082504

Sensitivity of the interannual variability of mineral aerosol simulations to meteorological forcing dataset
journal, January 2017

  • Smith, Molly B.; Mahowald, Natalie M.; Albani, Samuel
  • Atmospheric Chemistry and Physics, Vol. 17, Issue 5
  • DOI: 10.5194/acp-17-3253-2017

Modeling of particle size distribution and its influence on the radiative properties of mineral dust aerosol
journal, August 1996

  • Tegen, Ina; Lacis, Andrew A.
  • Journal of Geophysical Research: Atmospheres, Vol. 101, Issue D14
  • DOI: 10.1029/95JD03610

The influence on climate forcing of mineral aerosols from disturbed soils
journal, April 1996

  • Tegen, Ina; Lacis, Andrew A.; Fung, Inez
  • Nature, Vol. 380, Issue 6573
  • DOI: 10.1038/380419a0

Size matters: Influence of multiple scattering on CALIPSO light-extinction profiling in desert dust: SIZE MATTERS
journal, May 2010

  • Wandinger, U.; Tesche, M.; Seifert, P.
  • Geophysical Research Letters, Vol. 37, Issue 10
  • DOI: 10.1029/2010GL042815

Sensitivity of remote aerosol distributions to representation of cloud–aerosol interactions in a global climate model
journal, January 2013

  • Wang, H.; Easter, R. C.; Rasch, P. J.
  • Geoscientific Model Development, Vol. 6, Issue 3
  • DOI: 10.5194/gmd-6-765-2013

Aerosols in the E3SM Version 1: New Developments and Their Impacts on Radiative Forcing
journal, January 2020

  • Wang, Hailong; Easter, Richard C.; Zhang, Rudong
  • Journal of Advances in Modeling Earth Systems, Vol. 12, Issue 1
  • DOI: 10.1029/2019MS001851

New approach to the retrieval of AOD and its uncertainty from MISR observations over dark water
journal, January 2018

  • Witek, Marcin L.; Garay, Michael J.; Diner, David J.
  • Atmospheric Measurement Techniques, Vol. 11, Issue 1
  • DOI: 10.5194/amt-11-429-2018

Can Climate Models Reproduce the Decadal Change of Dust Aerosol in East Asia?
journal, September 2018

  • Wu, Chenglai; Lin, Zhaohui; Liu, Xiaohong
  • Geophysical Research Letters, Vol. 45, Issue 18
  • DOI: 10.1029/2018GL079376

Impacts of absorbing aerosol deposition on snowpack and hydrologic cycle in the Rocky Mountain region based on variable-resolution CESM (VR-CESM) simulations
journal, January 2018

  • Wu, Chenglai; Liu, Xiaohong; Lin, Zhaohui
  • Atmospheric Chemistry and Physics, Vol. 18, Issue 2
  • DOI: 10.5194/acp-18-511-2018

Impacts of Aerosol Dry Deposition on Black Carbon Spatial Distributions and Radiative Effects in the Community Atmosphere Model CAM5
journal, May 2018

  • Wu, Mingxuan; Liu, Xiaohong; Zhang, Leiming
  • Journal of Advances in Modeling Earth Systems, Vol. 10, Issue 5
  • DOI: 10.1029/2017MS001219

Impact of snow darkening via dust, black carbon, and organic carbon on boreal spring climate in the Earth system: DUST+BC+OC SDE WITH NASA GEOS-5/GOSWIM
journal, June 2015

  • Yasunari, Teppei J.; Koster, Randal D.; Lau, William K. M.
  • Journal of Geophysical Research: Atmospheres, Vol. 120, Issue 11
  • DOI: 10.1002/2014JD022977

Global view of aerosol vertical distributions from CALIPSO lidar measurements and GOCART simulations: Regional and seasonal variations
journal, January 2010

  • Yu, Hongbin; Chin, Mian; Winker, David M.
  • Journal of Geophysical Research, Vol. 115
  • DOI: 10.1029/2009JD013364

Aerosols from Overseas Rival Domestic Emissions over North America
journal, August 2012


Quantification of trans-Atlantic dust transport from seven-year (2007–2013) record of CALIPSO lidar measurements
journal, March 2015


Estimates of African Dust Deposition Along the Trans‐Atlantic Transit Using the Decadelong Record of Aerosol Measurements from CALIOP, MODIS, MISR, and IASI
journal, July 2019

  • Yu, Hongbin; Tan, Qian; Chin, Mian
  • Journal of Geophysical Research: Atmospheres, Vol. 124, Issue 14
  • DOI: 10.1029/2019JD030574

Efficient In-Cloud Removal of Aerosols by Deep Convection
journal, January 2019

  • Yu, Pengfei; Froyd, Karl D.; Portmann, Robert W.
  • Geophysical Research Letters, Vol. 46, Issue 2
  • DOI: 10.1029/2018GL080544

Mineral Dust Entrainment and Deposition (DEAD) model: Description and 1990s dust climatology
journal, January 2003


Spatial heterogeneity in aeolian erodibility: Uniform, topographic, geomorphic, and hydrologic hypotheses
journal, January 2003


An analysis of potential cloud artifacts in MODIS over ocean aerosol optical thickness products
journal, January 2005


Dust vertical profile impact on global radiative forcing estimation using a coupled chemical-transport–radiative-transfer model
journal, January 2013