skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Study of the structure of exploding flat foils at superhigh current density

Abstract

We have investigated the features produced in flat metal foils as a result of nanosecond explosions and phase transitions at current densities of (0.1–2) • 109A/cm2. Thin foils made of aluminum, copper, nickel, and titanium, with thicknesses of 1–15 μm, were tested. Here, the exploded foil structure was studied using X-pinch radiography and laser shadow imaging. Al, Ti, and Cu (5 and 7 μm thick) foils had an initial two-dimensional structure. At the same time, no apparent structure was registered in 1 μm Cu and 5 μm Ni foils. Experiments on generators with different output parameters have shown that the dominant structures that developed in the explosion are either cracks or bubbles and may depend on the orientation of the initial structure in the thin foil with respect to the current direction. In addition, the energy deposited in the foil differs by a factor of about 1.5 for the orthogonal vs parallel current and initial foil structure directions.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [2]
  1. Russian Academy of Sciences, Moscow (Russia)
  2. Cornell Univ., Ithaca, NY (United States)
Publication Date:
Research Org.:
Cornell Univ., Ithaca, NY (United States); Russian Academy of Sciences, Moscow (Russia)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1725781
Grant/Contract Number:  
NA0003764; 18-02-00631
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 128; Journal Issue: 20; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
70 PLASMA PHYSICS AND FUSION TECHNOLOGY; Optical imaging; diffraction optics; x-ray spectroscopy; thermodynamic states and processes; thermodynamic properties; radiography; x-ray bursts; fluid bubbles; phase transitions; high voltage diodes

Citation Formats

Shelkovenko, T. A., Pikuz, S. A., Tilikin, I. N., Mingaleev, A. R., Romanova, V. M., and Hammer, D. A.. Study of the structure of exploding flat foils at superhigh current density. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0019330.
Shelkovenko, T. A., Pikuz, S. A., Tilikin, I. N., Mingaleev, A. R., Romanova, V. M., & Hammer, D. A.. Study of the structure of exploding flat foils at superhigh current density. United States. https://doi.org/10.1063/5.0019330
Shelkovenko, T. A., Pikuz, S. A., Tilikin, I. N., Mingaleev, A. R., Romanova, V. M., and Hammer, D. A.. Wed . "Study of the structure of exploding flat foils at superhigh current density". United States. https://doi.org/10.1063/5.0019330.
@article{osti_1725781,
title = {Study of the structure of exploding flat foils at superhigh current density},
author = {Shelkovenko, T. A. and Pikuz, S. A. and Tilikin, I. N. and Mingaleev, A. R. and Romanova, V. M. and Hammer, D. A.},
abstractNote = {We have investigated the features produced in flat metal foils as a result of nanosecond explosions and phase transitions at current densities of (0.1–2) • 109A/cm2. Thin foils made of aluminum, copper, nickel, and titanium, with thicknesses of 1–15 μm, were tested. Here, the exploded foil structure was studied using X-pinch radiography and laser shadow imaging. Al, Ti, and Cu (5 and 7 μm thick) foils had an initial two-dimensional structure. At the same time, no apparent structure was registered in 1 μm Cu and 5 μm Ni foils. Experiments on generators with different output parameters have shown that the dominant structures that developed in the explosion are either cracks or bubbles and may depend on the orientation of the initial structure in the thin foil with respect to the current direction. In addition, the energy deposited in the foil differs by a factor of about 1.5 for the orthogonal vs parallel current and initial foil structure directions.},
doi = {10.1063/5.0019330},
journal = {Journal of Applied Physics},
number = 20,
volume = 128,
place = {United States},
year = {2020},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
This content will become publicly available on November 25, 2021
Publisher's Version of Record

Save / Share:

Works referenced in this record:

The current density and the specific energy input in fast electrical explosion
journal, January 1999

  • Sedoi, V. S.; Mesyats, G. A.; Oreshkin, V. I.
  • IEEE Transactions on Plasma Science, Vol. 27, Issue 4
  • DOI: 10.1109/27.782248

Influence of the foil material on the uniformity of the mechanical pressure pulse in electrical explosion of metal foils
journal, January 2015

  • Grigoriev, A. N.; Karnaukhov, E. I.; Pavlenko, A. V.
  • Journal of Applied Mechanics and Technical Physics, Vol. 56, Issue 1
  • DOI: 10.1134/S0021894415010204

Electrically exploded opening switches in high-current explosive magnetic generators
journal, January 2015


Source of a Mega-Ampere Current with ~100-ns Time of Rise Based on an Explosive Magnetic Generator
journal, December 2019


Study on metal foil explosion using high current
conference, December 2009

  • Mihara, Takayuki; Matsuo, N.; Otsuka, M.
  • Fourth International Conference on Experimental Mechanics, SPIE Proceedings
  • DOI: 10.1117/12.851562

Study of the Electric Explosion of Titanium Foils in Uranium Salts
journal, January 2010

  • Urutskoev, Leonid I.; Filippov, Dmitry V.
  • Journal of Modern Physics, Vol. 01, Issue 04
  • DOI: 10.4236/jmp.2010.14034

Comparison of a copper foil to a copper wire-array Z pinch at 18 MA
journal, October 2004

  • Nash, T. J.; Deeney, C.; Chandler, G. A.
  • Physics of Plasmas, Vol. 11, Issue 10
  • DOI: 10.1063/1.1796352

Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research
journal, March 2014

  • Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.
  • Physics of Plasmas, Vol. 21, Issue 3
  • DOI: 10.1063/1.4865367

Pulsed-power-driven cylindrical liner implosions of laser preheated fuel magnetized with an axial field
journal, May 2010

  • Slutz, S. A.; Herrmann, M. C.; Vesey, R. A.
  • Physics of Plasmas, Vol. 17, Issue 5
  • DOI: 10.1063/1.3333505

Scaling magnetized liner inertial fusion on Z and future pulsed-power accelerators
journal, February 2016

  • Slutz, S. A.; Stygar, W. A.; Gomez, M. R.
  • Physics of Plasmas, Vol. 23, Issue 2
  • DOI: 10.1063/1.4941100

Penetrating Radiography of Imploding and Stagnating Beryllium Liners on the Z Accelerator
journal, September 2012


Electrothermal instability growth in magnetically driven pulsed power liners
journal, September 2012

  • Peterson, Kyle J.; Sinars, Daniel B.; Yu, Edmund P.
  • Physics of Plasmas, Vol. 19, Issue 9
  • DOI: 10.1063/1.4751868

The Electrothermal Instability on Pulsed Power Ablations of Thin Foils
journal, November 2018

  • Steiner, Adam M.; Campbell, Paul C.; Yager-Elorriaga, David A.
  • IEEE Transactions on Plasma Science, Vol. 46, Issue 11
  • DOI: 10.1109/TPS.2018.2873947

Technique for insulated and non-insulated metal liner X-pinch radiography on a 1 MA pulsed power machine
journal, November 2017

  • Atoyan, L.; Shelkovenko, T. A.; Pikuz, S. A.
  • Review of Scientific Instruments, Vol. 88, Issue 11
  • DOI: 10.1063/1.4989985

Study of Electric Explosion of Flat Micron-Thick Foils at Current Densities of (5−50)×108 A/cm2
journal, February 2018


Stratification in Al and Cu foils exploded in vacuum
journal, October 2015

  • Baksht, R. B.; Rousskikh, A. G.; Zhigalin, A. S.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4934925

A Study of Thin Foil Explosion
journal, November 2018

  • Shelkovenko, Tatiana A.; Pikuz, Sergey A.; Tilikin, Ivan N.
  • IEEE Transactions on Plasma Science, Vol. 46, Issue 11
  • DOI: 10.1109/TPS.2018.2852063

Features of explosion of thin aluminum foils on an 8 kA, 350 ns pulse generator
journal, April 2020

  • Shelkovenko, T. A.; Tilikin, I. N.; Mingaleev, A. R.
  • Physics of Plasmas, Vol. 27, Issue 4
  • DOI: 10.1063/1.5133126

Significant change in threshold for plasma formation and evolution with small variation in copper alloys driven by a mega-ampere current pulse
journal, April 2019

  • Yates, K. C.; Bauer, B. S.; Fuelling, S.
  • Physics of Plasmas, Vol. 26, Issue 4
  • DOI: 10.1063/1.5066559

Use of hydrodynamic theory to estimate electrical current redistribution in metals
journal, May 2020

  • Yu, E. P.; Awe, T. J.; Cochrane, K. R.
  • Physics of Plasmas, Vol. 27, Issue 5
  • DOI: 10.1063/1.5143271

X-pinch. Part I
journal, April 2015


X-pinch. Part II
journal, June 2015


A review of projection radiography of plasma and biological objects in X-Pinch radiation
journal, March 2016


Evolution of X-pinch loads for pulsed power generators with current from 50 to 5000 kA
journal, November 2018

  • Shelkovenko, T. A.; Pikuz, S. A.; Tilikin, I. N.
  • Matter and Radiation at Extremes, Vol. 3, Issue 6
  • DOI: 10.1016/j.mre.2018.09.001

Determination of the size and structure of an X-pinch x-ray source from the diffraction pattern produced by microfabricated slits
journal, January 2005

  • Song, Byung Moo; Pikuz, Sergei A.; Shelkovenko, Tatiania A.
  • Applied Optics, Vol. 44, Issue 12
  • DOI: 10.1364/AO.44.002349

Dynamics of hybrid X-pinches
journal, January 2015

  • Shelkovenko, T. A.; Tilikin, I. N.; Ivanenkov, G. V.
  • Plasma Physics Reports, Vol. 41, Issue 1
  • DOI: 10.1134/S1063780X15010031

Multiphase Foamlike Structure of Exploding Wire Cores
journal, November 1999


Study of plasma parameter’s distribution upon electrical wire explosion
journal, January 2009

  • Tkachenko, S. I.; Romanova, V. M.; Mingaleev, A. R.
  • The European Physical Journal D, Vol. 54, Issue 2
  • DOI: 10.1140/epjd/e2008-00258-0

Electric explosion of fine wires: Three groups of materials
journal, August 2015

  • Romanova, V. M.; Ivanenkov, G. V.; Mingaleev, A. R.
  • Plasma Physics Reports, Vol. 41, Issue 8
  • DOI: 10.1134/S1063780X15080085

Instability growth for magnetized liner inertial fusion seeded by electro-thermal, electro-choric, and material strength effects
journal, October 2015

  • Pecover, J. D.; Chittenden, J. P.
  • Physics of Plasmas, Vol. 22, Issue 10
  • DOI: 10.1063/1.4932328