skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Helical spin structure in iron chains with hybridized boundaries

Abstract

In this paper, we have compared the magnetic properties of well-controlled ultra-short (≤50 nm) atomic iron (Fe) chains embedded in Fe-phthalocyanine films with those in Fe–hydrogen (H2) phthalocyanine superlattices. Surprisingly, we found that the coercivity of the atomic chains with free boundary conditions is independent of the chain length, whereas the one subject to hybridization of the chain ends exhibits an unexpected length dependence. These findings suggest that ferromagnetism in the free-boundary condition system is caused by an intrinsic indirect exchange. On the other hand, controlled boundary conditions produce a helical spin structure due to an extrinsic indirect exchange, which arises from the interaction between iron atoms at the ends of the chain and the hydrogen in the H2 phthalocyanine spacer. As a consequence, during magnetic reversal, ultra-short iron chains subject to boundary clamping develop a helical spin structure, leading to increased coercivity. These findings suggest unique insights and ideas for the design of atomic-scale ultra-dense magnetic storage nanodevices.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [3]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Univ. of California, San Diego, CA (United States)
  2. Univ. de Chile, Santiago (Chile); Center for the Development of Nanoscience and Nanotechnology (CEDENNA), Santiago (Chile)
  3. Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
  4. Univ. of Texas at San Antonio, TX (United States); General Atomics, San Diego, CA (United States)
Publication Date:
Research Org.:
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA); USDOE Laboratory Directed Research and Development (LDRD) Program; USDOE Office of Science (SC); National Science Foundation (NSF)
OSTI Identifier:
1724325
Report Number(s):
LLNL-JRNL-768283
Journal ID: ISSN 0003-6951; 958148
Grant/Contract Number:  
AC52-07NA27344; DMR 1805585; DMR 1804414; FA9550-161-0122; FA9550-18-1-0438; 19-LW-028; AC02-05CH11231
Resource Type:
Accepted Manuscript
Journal Name:
Applied Physics Letters
Additional Journal Information:
Journal Volume: 117; Journal Issue: 21; Journal ID: ISSN 0003-6951
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
75 CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY

Citation Formats

Vargas, Nicolas M., Torres, Felipe, Baker, Alexander A., Lee, Jonathan R. I., Kiwi, Miguel, Willey, Trevor M., Monton, Carlos, and Schuller, Ivan K.. Helical spin structure in iron chains with hybridized boundaries. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0022926.
Vargas, Nicolas M., Torres, Felipe, Baker, Alexander A., Lee, Jonathan R. I., Kiwi, Miguel, Willey, Trevor M., Monton, Carlos, & Schuller, Ivan K.. Helical spin structure in iron chains with hybridized boundaries. United States. https://doi.org/10.1063/5.0022926
Vargas, Nicolas M., Torres, Felipe, Baker, Alexander A., Lee, Jonathan R. I., Kiwi, Miguel, Willey, Trevor M., Monton, Carlos, and Schuller, Ivan K.. Wed . "Helical spin structure in iron chains with hybridized boundaries". United States. https://doi.org/10.1063/5.0022926. https://www.osti.gov/servlets/purl/1724325.
@article{osti_1724325,
title = {Helical spin structure in iron chains with hybridized boundaries},
author = {Vargas, Nicolas M. and Torres, Felipe and Baker, Alexander A. and Lee, Jonathan R. I. and Kiwi, Miguel and Willey, Trevor M. and Monton, Carlos and Schuller, Ivan K.},
abstractNote = {In this paper, we have compared the magnetic properties of well-controlled ultra-short (≤50 nm) atomic iron (Fe) chains embedded in Fe-phthalocyanine films with those in Fe–hydrogen (H2) phthalocyanine superlattices. Surprisingly, we found that the coercivity of the atomic chains with free boundary conditions is independent of the chain length, whereas the one subject to hybridization of the chain ends exhibits an unexpected length dependence. These findings suggest that ferromagnetism in the free-boundary condition system is caused by an intrinsic indirect exchange. On the other hand, controlled boundary conditions produce a helical spin structure due to an extrinsic indirect exchange, which arises from the interaction between iron atoms at the ends of the chain and the hydrogen in the H2 phthalocyanine spacer. As a consequence, during magnetic reversal, ultra-short iron chains subject to boundary clamping develop a helical spin structure, leading to increased coercivity. These findings suggest unique insights and ideas for the design of atomic-scale ultra-dense magnetic storage nanodevices.},
doi = {10.1063/5.0022926},
journal = {Applied Physics Letters},
number = 21,
volume = 117,
place = {United States},
year = {2020},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Absence of Ferromagnetism or Antiferromagnetism in One- or Two-Dimensional Isotropic Heisenberg Models
journal, November 1966


Coercivity Control of Variable-Length Iron Chains in Phthalocyanine Thin Films
journal, May 2012

  • Gredig, Thomas; Werber, Mathew; Guerra, Jorge L.
  • Journal of Superconductivity and Novel Magnetism, Vol. 25, Issue 7
  • DOI: 10.1007/s10948-012-1649-3

Substrate-controlled ferromagnetism in iron phthalocyanine films due to one-dimensional iron chains
journal, July 2012


Some Exact Results for the Many-Body Problem in one Dimension with Repulsive Delta-Function Interaction
journal, December 1967


Overcoming thermal fluctuations
journal, July 2003

  • Eisenmenger, Johannes; Schuller, Ivan K.
  • Nature Materials, Vol. 2, Issue 7
  • DOI: 10.1038/nmat934

Relationship between Systems of Impenetrable Bosons and Fermions in One Dimension
journal, November 1960

  • Girardeau, M.
  • Journal of Mathematical Physics, Vol. 1, Issue 6
  • DOI: 10.1063/1.1703687

Magnetic Spin Ladder ( C 5 H 12 N ) 2 Cu Br 4 : High-Field Magnetization and Scaling near Quantum Criticality
journal, May 2001


Structural refinement of superlattices from x-ray diffraction
journal, April 1992

  • Fullerton, Eric E.; Schuller, Ivan K.; Vanderstraeten, H.
  • Physical Review B, Vol. 45, Issue 16
  • DOI: 10.1103/PhysRevB.45.9292

Magnetic Properties of Semiconducting Spinel CdCr 2 S 4 Nanostructured Films Grown by Low-Pressure Metal–Organic Chemical Vapor Deposition
journal, July 2019

  • Pang, Chao; Srivastava, Abhishek; Lockart, Molly M.
  • ACS Applied Electronic Materials, Vol. 1, Issue 8
  • DOI: 10.1021/acsaelm.9b00245

Quantum Criticality: Competing Ground States in Low Dimensions
journal, April 2000


Electronic properties of transition metal phthalocyanines: The impact of the central metal atom (d5–d10)
journal, September 2010


2p x-ray absorption of iron-phthalocyanine
journal, November 2009


Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets
journal, April 2019


Entanglement, correlations, and the energy gap in many-body quantum systems
journal, March 2004

  • Haselgrove, Henry L.; Nielsen, Michael A.; Osborne, Tobias J.
  • Physical Review A, Vol. 69, Issue 3
  • DOI: 10.1103/PhysRevA.69.032303

Spin Coupling in Engineered Atomic Structures
journal, May 2006


Beating the superparamagnetic limit with exchange bias
journal, June 2003

  • Skumryev, Vassil; Stoyanov, Stoyan; Zhang, Yong
  • Nature, Vol. 423, Issue 6942
  • DOI: 10.1038/nature01687

Chiral Magnetism and High-Temperature Skyrmions in B20-Ordered Co-Si
journal, February 2020


Structure-dependent exchange in the organic magnets Cu(II)Pc and Mn(II)Pc
journal, May 2008


Dzyaloshinskii-Moriya interaction and magnetic ordering in 1D and 2D at nonzero T
journal, May 2014


Novel Chiral Magnetic Domain Wall Structure in Fe / Ni / Cu ( 001 ) Films
journal, April 2013


Transition metal phthalocyanines: Insight into the electronic structure from soft x-ray spectroscopy
journal, August 2012

  • Kroll, T.; Kraus, R.; Schönfelder, R.
  • The Journal of Chemical Physics, Vol. 137, Issue 5
  • DOI: 10.1063/1.4738754

Molecular spintronics: the role of coordination chemistry
journal, January 2016

  • Coronado, E.; Yamashita, M.
  • Dalton Transactions, Vol. 45, Issue 42
  • DOI: 10.1039/C6DT90183B

Molecular tilting and columnar stacking of Fe phthalocyanine thin films on Au(111)
journal, May 2015

  • Bartolomé, F.; Bunău, O.; García, L. M.
  • Journal of Applied Physics, Vol. 117, Issue 17
  • DOI: 10.1063/1.4916302

Tunable finite-sized chains to control magnetic relaxation
journal, January 2017


Molecular Self-Assembly at Solid Surfaces
journal, September 2011

  • Otero, Roberto; Gallego, José María; de Parga, Amadeo L. Vázquez
  • Advanced Materials, Vol. 23, Issue 44
  • DOI: 10.1002/adma.201102022

Quantum Spin Transport in Carbon Chains
journal, August 2010

  • Zanolli, Zeila; Onida, Giovanni; Charlier, J. -C.
  • ACS Nano, Vol. 4, Issue 9
  • DOI: 10.1021/nn100712q

Quantum Confinement in Monatomic Cu Chains on Cu(111)
journal, February 2004


Quantum Criticality in an Ising Chain: Experimental Evidence for Emergent E 8 Symmetry
journal, January 2010


The role of micro-shorts and electrode-film interface in the electrical transport of ultra-thin metallophthalocyanine capacitive devices
journal, September 2012

  • Monton, C.; Valmianski, I.; Schuller, Ivan K.
  • Applied Physics Letters, Vol. 101, Issue 13
  • DOI: 10.1063/1.4755762

Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles
journal, May 2003


Experimental characterization of coherent magnetization transport in a one-dimensional spin system
journal, October 2011


Topological–chiral magnetic interactions driven by emergent orbital magnetism
journal, January 2020


Molecular vs. inorganic spintronics: the role of molecular materials and single molecules
journal, January 2009

  • Camarero, Julio; Coronado, Eugenio
  • Journal of Materials Chemistry, Vol. 19, Issue 12
  • DOI: 10.1039/b819594n

Quantitative structural analysis of organic thin films: An x-ray diffraction study
journal, September 2005


Berry phase theory of Dzyaloshinskii–Moriya interaction and spin–orbit torques
journal, February 2014


Quantum criticality and universal scaling of a quantum antiferromagnet
journal, March 2005

  • Lake, Bella; Tennant, D. Alan; Frost, Chris D.
  • Nature Materials, Vol. 4, Issue 4
  • DOI: 10.1038/nmat1327

Chiral symmetry and scale invariance breaking in spin chains
journal, February 2020

  • Torres, Felipe; Kiwi, Miguel; Vargas, Nicolas M.
  • AIP Advances, Vol. 10, Issue 2
  • DOI: 10.1063/1.5130190

New Class of Layered Materials
journal, June 1980


Spin-orbit coupling and its effects in organic solids
journal, March 2012


Propagation of quantum information through a spin system
journal, May 2004


Highly unquenched orbital moment in textured Fe-phthalocyanine thin films
journal, May 2010


Self-Organized Growth, Structure, and Magnetism of Monatomic Transition-Metal Oxide Chains
journal, July 2016


Probing Superexchange Interaction in Molecular Magnets by Spin-Flip Spectroscopy and Microscopy
journal, November 2008


Chiral molecules and the electron spin
journal, March 2019


Electronic structure differences between H 2 -, Fe-, Co-, and Cu-phthalocyanine highly oriented thin films observed using NEXAFS spectroscopy
journal, July 2013

  • Willey, T. M.; Bagge-Hansen, M.; Lee, J. R. I.
  • The Journal of Chemical Physics, Vol. 139, Issue 3
  • DOI: 10.1063/1.4811487

Ferromagnetism in one-dimensional monatomic metal chains
journal, March 2002

  • Gambardella, P.; Dallmeyer, A.; Maiti, K.
  • Nature, Vol. 416, Issue 6878
  • DOI: 10.1038/416301a