DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design

Abstract

The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-FF, JARVIS-ML, and JARVIS-tools. To date, JARVIS consists of ≈40,000 materials and ≈1 million calculated properties in JARVIS-DFT, ≈500 materials and ≈110 force-fields in JARVIS-FF, and ≈25 ML models for material-property predictions in JARVIS-ML, all of which are continuously expanding. JARVIS-tools provides scripts and workflows for running and analyzing various simulations. We compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are publicly available at the website: https://jarvis.nist.gov.

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [2]; ORCiD logo [2]; ORCiD logo [2];  [2];  [3];  [3];  [4];  [4];  [5];  [6]; ORCiD logo [7];  [8]; ORCiD logo [9] more »; ORCiD logo [9]; ORCiD logo [10]; ORCiD logo [11]; ORCiD logo [12];  [12]; ORCiD logo [12];  [12]; ORCiD logo [2] « less
  1. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States); Theiss Research, La Jolla, CA (United States); Univ. of Maryland, College Park, MD (United States)
  2. National Inst. of Standards and Technology (NIST), Gaithersburg, MD (United States)
  3. Air Force Research Lab. (AFRL), Wright-Patterson AFB, OH (United States)
  4. Stanford Univ., CA (United States)
  5. Northwestern Univ., Evanston, IL (United States)
  6. Texas A & M Univ., College Station, TX (United States)
  7. Univ. of Tennessee, Knoxville, TN (United States); Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  8. Arizona State Univ., Tempe, AZ (United States)
  9. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
  10. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  11. Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States)
  12. Rutgers Univ., Piscataway, NJ (United States)
Publication Date:
Research Org.:
Oak Ridge National Laboratory (ORNL), Oak Ridge, TN (United States); Los Alamos National Laboratory (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Department of Commerce; USDOE Laboratory Directed Research and Development (LDRD) Program
OSTI Identifier:
1720234
Alternate Identifier(s):
OSTI ID: 1739956
Report Number(s):
LA-UR-20-25348
Journal ID: ISSN 2057-3960
Grant/Contract Number:  
AC05-00OR22725; TG-DMR-190095; DMR-1629059; DMR-1629346; OAC-1835690; 70NANB19H117; 70NANB19H005; 20200104DR; 89233218CNA000001
Resource Type:
Accepted Manuscript
Journal Name:
npj Computational Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 1; Journal ID: ISSN 2057-3960
Publisher:
Nature Publishing Group
Country of Publication:
United States
Language:
English
Subject:
36 MATERIALS SCIENCE; Atomistic models; electronic properties and materials

Citation Formats

Choudhary, Kamal, Garrity, Kevin F., Reid, Andrew C. E., DeCost, Brian, Biacchi, Adam J., Hight Walker, Angela R., Trautt, Zachary, Hattrick-Simpers, Jason, Kusne, A. Gilad, Centrone, Andrea, Davydov, Albert, Jiang, Jie, Pachter, Ruth, Cheon, Gowoon, Reed, Evan, Agrawal, Ankit, Qian, Xiaofeng, Sharma, Vinit K., Zhuang, Houlong, Kalinin, Sergei V., Sumpter, Bobby G., Pilania, Ghanshyam, Acar, Pinar, Mandal, Subhasish, Haule, Kristjan, Vanderbilt, David, Rabe, Karin, and Tavazza, Francesca. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. United States: N. p., 2020. Web. doi:10.1038/s41524-020-00440-1.
Choudhary, Kamal, Garrity, Kevin F., Reid, Andrew C. E., DeCost, Brian, Biacchi, Adam J., Hight Walker, Angela R., Trautt, Zachary, Hattrick-Simpers, Jason, Kusne, A. Gilad, Centrone, Andrea, Davydov, Albert, Jiang, Jie, Pachter, Ruth, Cheon, Gowoon, Reed, Evan, Agrawal, Ankit, Qian, Xiaofeng, Sharma, Vinit K., Zhuang, Houlong, Kalinin, Sergei V., Sumpter, Bobby G., Pilania, Ghanshyam, Acar, Pinar, Mandal, Subhasish, Haule, Kristjan, Vanderbilt, David, Rabe, Karin, & Tavazza, Francesca. The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design. United States. https://doi.org/10.1038/s41524-020-00440-1
Choudhary, Kamal, Garrity, Kevin F., Reid, Andrew C. E., DeCost, Brian, Biacchi, Adam J., Hight Walker, Angela R., Trautt, Zachary, Hattrick-Simpers, Jason, Kusne, A. Gilad, Centrone, Andrea, Davydov, Albert, Jiang, Jie, Pachter, Ruth, Cheon, Gowoon, Reed, Evan, Agrawal, Ankit, Qian, Xiaofeng, Sharma, Vinit K., Zhuang, Houlong, Kalinin, Sergei V., Sumpter, Bobby G., Pilania, Ghanshyam, Acar, Pinar, Mandal, Subhasish, Haule, Kristjan, Vanderbilt, David, Rabe, Karin, and Tavazza, Francesca. Thu . "The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design". United States. https://doi.org/10.1038/s41524-020-00440-1. https://www.osti.gov/servlets/purl/1720234.
@article{osti_1720234,
title = {The joint automated repository for various integrated simulations (JARVIS) for data-driven materials design},
author = {Choudhary, Kamal and Garrity, Kevin F. and Reid, Andrew C. E. and DeCost, Brian and Biacchi, Adam J. and Hight Walker, Angela R. and Trautt, Zachary and Hattrick-Simpers, Jason and Kusne, A. Gilad and Centrone, Andrea and Davydov, Albert and Jiang, Jie and Pachter, Ruth and Cheon, Gowoon and Reed, Evan and Agrawal, Ankit and Qian, Xiaofeng and Sharma, Vinit K. and Zhuang, Houlong and Kalinin, Sergei V. and Sumpter, Bobby G. and Pilania, Ghanshyam and Acar, Pinar and Mandal, Subhasish and Haule, Kristjan and Vanderbilt, David and Rabe, Karin and Tavazza, Francesca},
abstractNote = {The Joint Automated Repository for Various Integrated Simulations (JARVIS) is an integrated infrastructure to accelerate materials discovery and design using density functional theory (DFT), classical force-fields (FF), and machine learning (ML) techniques. JARVIS is motivated by the Materials Genome Initiative (MGI) principles of developing open-access databases and tools to reduce the cost and development time of materials discovery, optimization, and deployment. The major features of JARVIS are: JARVIS-DFT, JARVIS-FF, JARVIS-ML, and JARVIS-tools. To date, JARVIS consists of ≈40,000 materials and ≈1 million calculated properties in JARVIS-DFT, ≈500 materials and ≈110 force-fields in JARVIS-FF, and ≈25 ML models for material-property predictions in JARVIS-ML, all of which are continuously expanding. JARVIS-tools provides scripts and workflows for running and analyzing various simulations. We compare our computational data to experiments or high-fidelity computational methods wherever applicable to evaluate error/uncertainty in predictions. In addition to the existing workflows, the infrastructure can support a wide variety of other technologically important applications as part of the data-driven materials design paradigm. The JARVIS datasets and tools are publicly available at the website: https://jarvis.nist.gov.},
doi = {10.1038/s41524-020-00440-1},
journal = {npj Computational Materials},
number = 1,
volume = 6,
place = {United States},
year = {Thu Nov 12 00:00:00 EST 2020},
month = {Thu Nov 12 00:00:00 EST 2020}
}

Works referenced in this record:

Perspective: Materials informatics and big data: Realization of the “fourth paradigm” of science in materials science
journal, April 2016

  • Agrawal, Ankit; Choudhary, Alok
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4946894

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

High-Throughput Combinatorial Database of Electronic Band Structures for Inorganic Scintillator Materials
journal, June 2011

  • Setyawan, Wahyu; Gaume, Romain M.; Lam, Stephanie
  • ACS Combinatorial Science, Vol. 13, Issue 4
  • DOI: 10.1021/co200012w

High-throughput density functional perturbation theory and machine learning predictions of infrared, piezoelectric, and dielectric responses
journal, May 2020

  • Choudhary, Kamal; Garrity, Kevin F.; Sharma, Vinit
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-020-0337-2

An open experimental database for exploring inorganic materials
journal, April 2018

  • Zakutayev, Andriy; Wunder, Nick; Schwarting, Marcus
  • Scientific Data, Vol. 5, Issue 1
  • DOI: 10.1038/sdata.2018.53

Perspective: Composition–structure–property mapping in high-throughput experiments: Turning data into knowledge
journal, May 2016

  • Hattrick-Simpers, Jason R.; Gregoire, John M.; Kusne, A. Gilad
  • APL Materials, Vol. 4, Issue 5
  • DOI: 10.1063/1.4950995

Elastic properties of bulk and low-dimensional materials using van der Waals density functional
journal, July 2018


From DFT to machine learning: recent approaches to materials science–a review
journal, May 2019

  • Schleder, Gabriel R.; Padilha, Antonio C. M.; Acosta, Carlos Mera
  • Journal of Physics: Materials, Vol. 2, Issue 3
  • DOI: 10.1088/2515-7639/ab084b

wannier90: A tool for obtaining maximally-localised Wannier functions
journal, May 2008

  • Mostofi, Arash A.; Yates, Jonathan R.; Lee, Young-Su
  • Computer Physics Communications, Vol. 178, Issue 9
  • DOI: 10.1016/j.cpc.2007.11.016

Phase diagrams for lead-free solder alloys
journal, December 2002


New Light-Harvesting Materials Using Accurate and Efficient Bandgap Calculations
journal, August 2014

  • Castelli, Ivano E.; Hüser, Falco; Pandey, Mohnish
  • Advanced Energy Materials, Vol. 5, Issue 2
  • DOI: 10.1002/aenm.201400915

Computer Simulation of Liquids
book, June 2017


Chemical accuracy for the van der Waals density functional
journal, December 2009

  • Klimeš, Jiří; Bowler, David R.; Michaelides, Angelos
  • Journal of Physics: Condensed Matter, Vol. 22, Issue 2
  • DOI: 10.1088/0953-8984/22/2/022201

Computation-Ready, Experimental Metal–Organic Frameworks: A Tool To Enable High-Throughput Screening of Nanoporous Crystals
journal, October 2014

  • Chung, Yongchul G.; Camp, Jeffrey; Haranczyk, Maciej
  • Chemistry of Materials, Vol. 26, Issue 21
  • DOI: 10.1021/cm502594j

Crystal Plasticity Modeling and Experimental Validation with an Orientation Distribution Function for Ti-7Al Alloy
journal, October 2017

  • Acar, Pınar; Ramazani, Ali; Sundararaghavan, Veera
  • Metals, Vol. 7, Issue 11
  • DOI: 10.3390/met7110459

AiiDA: automated interactive infrastructure and database for computational science
journal, January 2016


Spin-orbit spillage as a measure of band inversion in insulators
journal, September 2014


Machine learning in materials informatics: recent applications and prospects
journal, December 2017

  • Ramprasad, Rampi; Batra, Rohit; Pilania, Ghanshyam
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0056-5

New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design
journal, May 2002

  • Belsky, Alec; Hellenbrandt, Mariette; Karen, Vicky Lynn
  • Acta Crystallographica Section B Structural Science, Vol. 58, Issue 3
  • DOI: 10.1107/S0108768102006948

Convergence and machine learning predictions of Monkhorst-Pack k-points and plane-wave cut-off in high-throughput DFT calculations
journal, April 2019


Electronic structure calculations with dynamical mean-field theory
journal, August 2006


The Materials Research Platform: Defining the Requirements from User Stories
journal, December 2019


Computational screening of high-performance optoelectronic materials using OptB88vdW and TB-mBJ formalisms
journal, May 2018

  • Choudhary, Kamal; Zhang, Qin; Reid, Andrew C. E.
  • Scientific Data, Vol. 5, Issue 1
  • DOI: 10.1038/sdata.2018.82

BoltzTraP. A code for calculating band-structure dependent quantities
journal, July 2006


Accurate Band Gaps of Semiconductors and Insulators with a Semilocal Exchange-Correlation Potential
journal, June 2009


The quest for new functionality
journal, March 2015


Correcting density functional theory for accurate predictions of compound enthalpies of formation: Fitted elemental-phase reference energies
journal, March 2012


High-throughput Identification and Characterization of Two-dimensional Materials using Density functional theory
journal, July 2017


The Materials Genome Initiative, the interplay of experiment, theory and computation
journal, April 2014

  • de Pablo, Juan J.; Jones, Barbara; Kovacs, Cora Lind
  • Current Opinion in Solid State and Materials Science, Vol. 18, Issue 2
  • DOI: 10.1016/j.cossms.2014.02.003

Discovery of High-Performance Thermoelectric Chalcogenides through Reliable High-Throughput Material Screening
journal, July 2018

  • Xi, Lili; Pan, Shanshan; Li, Xin
  • Journal of the American Chemical Society, Vol. 140, Issue 34
  • DOI: 10.1021/jacs.8b04704

Materials genomics: From CALPHAD to flight
journal, January 2014


The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies
journal, December 2015


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Matminer: An open source toolkit for materials data mining
journal, September 2018


Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set
journal, October 1996


First principles phonon calculations in materials science
journal, November 2015


Identification of Potential Photovoltaic Absorbers Based on First-Principles Spectroscopic Screening of Materials
journal, February 2012


Machine learning with force-field-inspired descriptors for materials: Fast screening and mapping energy landscape
journal, August 2018


Machine learning enabled autonomous microstructural characterization in 3D samples
journal, January 2020

  • Chan, Henry; Cherukara, Mathew; Loeffler, Troy D.
  • npj Computational Materials, Vol. 6, Issue 1
  • DOI: 10.1038/s41524-019-0267-z

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Enhancing materials property prediction by leveraging computational and experimental data using deep transfer learning
journal, November 2019


Evaluation and comparison of classical interatomic potentials through a user-friendly interactive web-interface
journal, January 2017

  • Choudhary, Kamal; Congo, Faical Yannick P.; Liang, Tao
  • Scientific Data, Vol. 4, Issue 1
  • DOI: 10.1038/sdata.2016.125

PFHub: The Phase-Field Community Hub
journal, January 2019

  • Wheeler, Daniel; Keller, Trevor; DeWitt, Stephen J.
  • Journal of Open Research Software, Vol. 7
  • DOI: 10.5334/jors.276

Effective mass and Fermi surface complexity factor from ab initio band structure calculations
journal, February 2017

  • Gibbs, Zachary M.; Ricci, Francesco; Li, Guodong
  • npj Computational Materials, Vol. 3, Issue 1
  • DOI: 10.1038/s41524-017-0013-3

AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations
journal, June 2012


Fulfilling the promise of the materials genome initiative with high-throughput experimental methodologies
journal, March 2017

  • Green, M. L.; Choi, C. L.; Hattrick-Simpers, J. R.
  • Applied Physics Reviews, Vol. 4, Issue 1
  • DOI: 10.1063/1.4977487

WannierTools: An open-source software package for novel topological materials
journal, March 2018


Accelerated Discovery of Efficient Solar Cell Materials Using Quantum and Machine-Learning Methods
journal, July 2019


The potential of atomistic simulations and the knowledgebase of interatomic models
journal, July 2011


MPInterfaces: A Materials Project based Python tool for high-throughput computational screening of interfacial systems
journal, September 2016


Occurrence of the potent mutagens 2- nitrobenzanthrone and 3-nitrobenzanthrone in fine airborne particles
journal, January 2019

  • Santos, Aldenor G.; da Rocha, Gisele O.; de Andrade, Jailson B.
  • Scientific Reports, Vol. 9, Issue 1
  • DOI: 10.1038/s41598-018-37186-2

The NOMAD laboratory: from data sharing to artificial intelligence
journal, May 2019


PRISMS: An Integrated, Open-Source Framework for Accelerating Predictive Structural Materials Science
journal, August 2018


Python Materials Genomics (pymatgen): A robust, open-source python library for materials analysis
journal, February 2013


High-throughput Discovery of Topologically Non-trivial Materials using Spin-orbit Spillage
dataset, January 2019


NIST-JARVIS infrastructure for Improved Materials Design
text, January 2022


First principles phonon calculations in materials science
preprint, January 2015


High-throughput Discovery of Topologically Non-trivial Materials using Spin-orbit Spillage
dataset, January 2019