skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Evaluating aqueous flow battery electrolytes: a coordinated approach

Abstract

Here, we outline some basic pitfalls in the electrochemical investigation of aqueous metal complexes, advocate for the use of bulk electrolysis in redox flow cells for electrolyte analysis, and demonstrate methods of operation and performance of a lab scale redox flow battery.

Authors:
ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Department of Chemistry, University of Colorado Boulder, Boulder, USA
Publication Date:
Sponsoring Org.:
USDOE Advanced Research Projects Agency - Energy (ARPA-E)
OSTI Identifier:
1716540
Grant/Contract Number:  
AR000994
Resource Type:
Publisher's Accepted Manuscript
Journal Name:
Dalton Transactions
Additional Journal Information:
Journal Name: Dalton Transactions Journal Volume: 49 Journal Issue: 45; Journal ID: ISSN 1477-9226
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Robb, Brian H., Waters, Scott E., and Marshak, Michael P.. Evaluating aqueous flow battery electrolytes: a coordinated approach. United Kingdom: N. p., 2020. Web. https://doi.org/10.1039/D0DT02462G.
Robb, Brian H., Waters, Scott E., & Marshak, Michael P.. Evaluating aqueous flow battery electrolytes: a coordinated approach. United Kingdom. https://doi.org/10.1039/D0DT02462G
Robb, Brian H., Waters, Scott E., and Marshak, Michael P.. Wed . "Evaluating aqueous flow battery electrolytes: a coordinated approach". United Kingdom. https://doi.org/10.1039/D0DT02462G.
@article{osti_1716540,
title = {Evaluating aqueous flow battery electrolytes: a coordinated approach},
author = {Robb, Brian H. and Waters, Scott E. and Marshak, Michael P.},
abstractNote = {Here, we outline some basic pitfalls in the electrochemical investigation of aqueous metal complexes, advocate for the use of bulk electrolysis in redox flow cells for electrolyte analysis, and demonstrate methods of operation and performance of a lab scale redox flow battery.},
doi = {10.1039/D0DT02462G},
journal = {Dalton Transactions},
number = 45,
volume = 49,
place = {United Kingdom},
year = {2020},
month = {11}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/D0DT02462G

Save / Share:

Works referenced in this record:

Pathways to low-cost electrochemical energy storage: a comparison of aqueous and nonaqueous flow batteries
journal, January 2014

  • Darling, Robert M.; Gallagher, Kevin G.; Kowalski, Jeffrey A.
  • Energy & Environmental Science, Vol. 7, Issue 11, p. 3459-3477
  • DOI: 10.1039/C4EE02158D

Aqueous Chemistry of Titanium(II) Species
journal, September 2003

  • Kölle, Ulrich; Kölle, Philipp
  • Angewandte Chemie International Edition, Vol. 42, Issue 37
  • DOI: 10.1002/anie.200351280

Elucidating Factors Controlling Long-Term Stability of Radical Anions for Negative Charge Storage in Nonaqueous Redox Flow Batteries
journal, March 2018

  • Zhang, Jingjing; Huang, Jinhua; Robertson, Lily A.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcc.8b01434

Progress in Flow Battery Research and Development
journal, June 2011

  • Skyllas-Kazacos, M.; Chakrabarti, M. H.; Hajimolana, S. A.
  • Journal of The Electrochemical Society, Vol. 158, Issue 8, p. R55-R79
  • DOI: 10.1149/1.3599565

Electronic Structure and Reactivity of a Well-Defined Mononuclear Complex of Ti(II)
journal, October 2015


Quantum jumps in the PEMFC science and technology from the 1960s to the year 2000
journal, December 2001


Solution Properties and Practical Limits of Concentrated Electrolytes for Nonaqueous Redox Flow Batteries
journal, March 2018

  • Zhang, Jingjing; Corman, R. E.; Schuh, Jonathon K.
  • The Journal of Physical Chemistry C, Vol. 122, Issue 15
  • DOI: 10.1021/acs.jpcc.8b02009

Redox chemistry of aquatitanium(II), Ti2+(aq)
journal, December 2011


An aqueous, polymer-based redox-flow battery using non-corrosive, safe and low-cost materials
journal, October 2015

  • Janoschka, Tobias; Martin, Norbert; Martin, Udo
  • Nature, Vol. 527, Issue 7576, p. 78-81
  • DOI: 10.1038/nature15746

Electrochemical investigation of uranium β-diketonates for all-uranium redox flow battery
journal, November 2002


Proton-Coupled Electron Transfer
journal, April 2012

  • Weinberg, David R.; Gagliardi, Christopher J.; Hull, Jonathan F.
  • Chemical Reviews, Vol. 112, Issue 7
  • DOI: 10.1021/cr200177j

Non-aqueous chromium acetylacetonate electrolyte for redox flow batteries
journal, November 2010

  • Liu, Qinghua; Shinkle, Aaron A.; Li, Yongdan
  • Electrochemistry Communications, Vol. 12, Issue 11, p. 1634-1637
  • DOI: 10.1016/j.elecom.2010.09.013

Cobalt and Vanadium Trimetaphosphate Polyanions: Synthesis, Characterization, and Electrochemical Evaluation for Non-aqueous Redox-Flow Battery Applications
journal, January 2018

  • Stauber, Julia M.; Zhang, Shiyu; Gvozdik, Nataliya
  • Journal of the American Chemical Society, Vol. 140, Issue 2
  • DOI: 10.1021/jacs.7b08751

Recent Progress in Redox Flow Battery Research and Development
journal, September 2012

  • Wang, Wei; Luo, Qingtao; Li, Bin
  • Advanced Functional Materials, Vol. 23, Issue 8, p. 970-986
  • DOI: 10.1002/adfm.201200694

Cost and performance model for redox flow batteries
journal, February 2014


A study of the V(II)/V(III) redox couple for redox flow cell applications
journal, June 1985


Solubility of vanadyl sulfate in concentrated sulfuric acid solutions
journal, April 1998


Voltammetry of Quinones in Unbuffered Aqueous Solution: Reassessing the Roles of Proton Transfer and Hydrogen Bonding in the Aqueous Electrochemistry of Quinones
journal, October 2007

  • Quan, May; Sanchez, Daniel; Wasylkiw, Mark F.
  • Journal of the American Chemical Society, Vol. 129, Issue 42, p. 12847-12856
  • DOI: 10.1021/ja0743083

Electrochemistry of the tris(2,2‘-bipyridine) complex of iron(II) in ionic liquids and aprotic molecular solvents
journal, December 2016


Towards an all-copper redox flow battery based on a copper-containing ionic liquid
journal, January 2016

  • Schaltin, Stijn; Li, Yun; Brooks, Neil R.
  • Chemical Communications, Vol. 52, Issue 2
  • DOI: 10.1039/C5CC06774J

Ionic liquid-mediated aqueous redox flow batteries for high voltage applications
journal, September 2016


Dramatic performance gains in vanadium redox flow batteries through modified cell architecture
journal, May 2012


A Dual‐Ion Organic Symmetric Battery Constructed from Phenazine‐Based Artificial Bipolar Molecules
journal, July 2019

  • Dai, Gaole; He, Yan; Niu, Zhihui
  • Angewandte Chemie International Edition, Vol. 58, Issue 29
  • DOI: 10.1002/anie.201901040

Application of Redox Non-Innocent Ligands to Non-Aqueous Flow Battery Electrolytes
journal, September 2013

  • Cappillino, Patrick J.; Pratt, Harry D.; Hudak, Nicholas S.
  • Advanced Energy Materials, Vol. 4, Issue 1
  • DOI: 10.1002/aenm.201300566

The structure of iron(III) in aqueous solution
journal, July 1967

  • Schugar, Harvey J.; Walling, Cheves.; Jones, Rebecca B.
  • Journal of the American Chemical Society, Vol. 89, Issue 15
  • DOI: 10.1021/ja00991a007

Advanced Redox-Flow Batteries: A Perspective
journal, September 2015

  • Perry, Mike L.; Weber, Adam Z.
  • Journal of The Electrochemical Society, Vol. 163, Issue 1
  • DOI: 10.1149/2.0101601jes

Stability of molecular radicals in organic non-aqueous redox flow batteries: A mini review
journal, June 2018


Non-aqueous manganese acetylacetonate electrolyte for redox flow batteries
journal, July 2011

  • Sleightholme, Alice E. S.; Shinkle, Aaron A.; Liu, Qinghua
  • Journal of Power Sources, Vol. 196, Issue 13, p. 5742-5745
  • DOI: 10.1016/j.jpowsour.2011.02.020

Nonaqueous redox-flow batteries: organic solvents, supporting electrolytes, and redox pairs
journal, January 2015

  • Gong, Ke; Fang, Qianrong; Gu, Shuang
  • Energy & Environmental Science, Vol. 8, Issue 12, p. 3515-3530
  • DOI: 10.1039/C5EE02341F

A Stable Vanadium Redox-Flow Battery with High Energy Density for Large-Scale Energy Storage
journal, March 2011

  • Li, Liyu; Kim, Soowhan; Wang, Wei
  • Advanced Energy Materials, Vol. 1, Issue 3, p. 394-400
  • DOI: 10.1002/aenm.201100008

Vanadium redox battery: Positive half-cell electrolyte studies
journal, April 2009


Chelated Chromium Electrolyte Enabling High-Voltage Aqueous Flow Batteries
journal, October 2019


Non-aqueous vanadium acetylacetonate electrolyte for redox flow batteries
journal, December 2009

  • Liu, Qinghua; Sleightholme, Alice E. S.; Shinkle, Aaron A.
  • Electrochemistry Communications, Vol. 11, Issue 12, p. 2312-2315
  • DOI: 10.1016/j.elecom.2009.10.006

The 5-V Window of Polarizability of Fluorinated Diamond Electrodes in Aqueous Solutions
journal, December 2003

  • Ferro, Sergio; De Battisti, Achille
  • Analytical Chemistry, Vol. 75, Issue 24
  • DOI: 10.1021/ac034717r

Spectroelectrochemistry of Vanadium Acetylacetonate and Chromium Acetylacetonate for Symmetric Nonaqueous Flow Batteries
journal, January 2016

  • Saraidaridis, James D.; Bartlett, Bart M.; Monroe, Charles W.
  • Journal of The Electrochemical Society, Vol. 163, Issue 7
  • DOI: 10.1149/2.0441607jes

A comparative study of all-vanadium and iron-chromium redox flow batteries for large-scale energy storage
journal, December 2015


Aqueous organic and redox-mediated redox flow batteries: a review
journal, June 2020


Poly(boron-dipyrromethene)—A Redox-Active Polymer Class for Polymer Redox-Flow Batteries
journal, May 2016


Polyoxovanadate-alkoxide clusters as multi-electron charge carriers for symmetric non-aqueous redox flow batteries
journal, January 2018

  • VanGelder, L. E.; Kosswattaarachchi, A. M.; Forrestel, P. L.
  • Chemical Science, Vol. 9, Issue 6
  • DOI: 10.1039/C7SC05295B

Corrosion behavior of a positive graphite electrode in vanadium redox flow battery
journal, October 2011


Electrochemistry in Room Temperature Ionic Liquids: A Review and Some Possible Applications
journal, October 2006

  • Silvester, Debbie S.; Compton, Richard G.
  • Zeitschrift für Physikalische Chemie, Vol. 220, Issue 10, p. 1247-1274
  • DOI: 10.1524/zpch.2006.220.10.1247

A biomimetic high-capacity phenazine-based anolyte for aqueous organic redox flow batteries
journal, June 2018


Anthraquinone Derivatives in Aqueous Flow Batteries
journal, December 2016

  • Gerhardt, Michael R.; Tong, Liuchuan; Gómez-Bombarelli, Rafael
  • Advanced Energy Materials, Vol. 7, Issue 8
  • DOI: 10.1002/aenm.201601488

Polymeric Active Materials for Redox Flow Battery Application
journal, December 2019


A study of the Fe(III)/Fe(II)–triethanolamine complex redox couple for redox flow battery application
journal, May 2006


Highly Soluble Tris(2,2’-bipyridine) Metal Bis(trifluoromethanesulfonyl)imide Complexes for High Energy Organic Redox Flow Batteries
journal, January 2018

  • Mun, Junyoung; Oh, Duk-Jin; Park, Min Sik
  • Journal of The Electrochemical Society, Vol. 165, Issue 2
  • DOI: 10.1149/2.0791802jes

Electrochemical Energy Storage for Green Grid
journal, May 2011

  • Yang, Zhenguo; Zhang, Jianlu; Kintner-Meyer, Michael C. W.
  • Chemical Reviews, Vol. 111, Issue 5, p. 3577-3613
  • DOI: 10.1021/cr100290v

On the Standard Potential of the Titanium(III)-Titanium(II) Couple
journal, September 1963

  • Olver, John W.; Ross, James W.
  • Journal of the American Chemical Society, Vol. 85, Issue 17
  • DOI: 10.1021/ja00900a006

Desymmetrized hexasubstituted [3]radialene anions as aqueous organic catholytes for redox flow batteries
journal, January 2020

  • Turner, Nicholas A.; Freeman, Matthew B.; Pratt, Harry D.
  • Chemical Communications, Vol. 56, Issue 18
  • DOI: 10.1039/C9CC08547E

Minimizing Oxygen Permeation in Metal-Chelate Flow Batteries
journal, June 2020

  • Robb, Brian H.; Waters, Scott E.; Marshak, Michael P.
  • ECS Transactions, Vol. 97, Issue 7
  • DOI: 10.1149/09707.0237ecst

Recent developments in organic redox flow batteries: A critical review
journal, August 2017


A rechargeable redox battery utilizing ruthenium complexes with non-aqueous organic electrolyte
journal, November 1988

  • Matsuda, Y.; Tanaka, K.; Okada, M.
  • Journal of Applied Electrochemistry, Vol. 18, Issue 6, p. 909-914
  • DOI: 10.1007/BF01016050

Aqueous Redox Transition Metal Complexes for Electrochemical Applications as a Function of pH
journal, December 1987

  • Ibanez, Jorge G.; Choi, Chan‐Soo; Becker, Ralph S.
  • Journal of The Electrochemical Society, Vol. 134, Issue 12
  • DOI: 10.1149/1.2100344

Communication—Iron Ionic Liquid Electrolytes for Redox Flow Battery Applications
journal, January 2016

  • Miller, M. A.; Wainright, J. S.; Savinell, R. F.
  • Journal of The Electrochemical Society, Vol. 163, Issue 3
  • DOI: 10.1149/2.0061605jes

Non-Aqueous Redox Flow Batteries with Nickel and Iron Tris(2,2ʹ-bipyridine) Complex Electrolyte
journal, January 2012

  • Mun, Junyoung; Lee, Myung-Jin; Park, Joung-Won
  • Electrochemical and Solid-State Letters, Vol. 15, Issue 6
  • DOI: 10.1149/2.033206esl

Alkaline quinone flow battery
journal, September 2015


Effect of Chelation on Iron–Chromium Redox Flow Batteries
journal, April 2020


Flow Batteries: Current Status and Trends
journal, September 2015

  • Soloveichik, Grigorii L.
  • Chemical Reviews, Vol. 115, Issue 20
  • DOI: 10.1021/cr500720t

A comprehensive review on PEM water electrolysis
journal, April 2013

  • Carmo, Marcelo; Fritz, David L.; Mergel, Jürgen
  • International Journal of Hydrogen Energy, Vol. 38, Issue 12, p. 4901-4934
  • DOI: 10.1016/j.ijhydene.2013.01.151

Structure and properties of iron(III) 1,3-propanediaminetetraacetate complex in aqueous solutions
journal, August 1991


New All-Vanadium Redox Flow Cell
journal, January 1986

  • Skyllas-Kazacos, M.
  • Journal of The Electrochemical Society, Vol. 133, Issue 5
  • DOI: 10.1149/1.2108706

Electrolyte Lifetime in Aqueous Organic Redox Flow Batteries: A Critical Review
journal, February 2020


A metal-free organic–inorganic aqueous flow battery
journal, January 2014

  • Huskinson, Brian; Marshak, Michael P.; Suh, Changwon
  • Nature, Vol. 505, Issue 7482, p. 195-198
  • DOI: 10.1038/nature12909