skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Piezoresponse amplitude and phase quantified for electromechanical characterization

Abstract

Piezoresponse force microscopy (PFM) is a powerful characterization technique to readily image and manipulate the ferroelectric domains. PFM gives an insight into the strength of local piezoelectric coupling and polarization direction through PFM amplitude and phase, respectively. Converting measured arbitrary units into units of effective piezoelectric constant remains a challenge, and insufficient methods are often used. While most quantification efforts have been spent on quantifying the PFM amplitude signal, little attention has been given to the PFM phase, which is often arbitrarily adjusted to fit expectations. This is problematic when investigating materials with unknown or negative sign of the probed effective electrostrictive coefficient or strong frequency dispersion of electromechanical responses, because assumptions about the PFM phase cannot be reliably made. The PFM phase can, however, provide important information on the polarization orientation and the sign of the effective electrostrictive coefficient probed by PFM. Most notably, the orientation of the PFM hysteresis loop is determined by the PFM phase. Moreover, when presenting PFM data as a combined signal, the resulting response can be artificially lowered or asymmetric if the phase data have not been correctly processed. Here, we explain the PFM amplitude quantification process and demonstrate a path to identify themore » phase offset required to extract correct meaning from the PFM phase data. We explore different sources of phase offsets including the experimental setup, instrumental contributions, and data analysis. We discuss the physical working principles of PFM and develop a strategy to extract physical meaning from the PFM amplitude and phase.« less

Authors:
ORCiD logo [1];  [2]; ORCiD logo [2]; ORCiD logo [1]; ORCiD logo [3]; ORCiD logo [1]; ORCiD logo [1]; ORCiD logo [1]
  1. Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Center for Nanophase Materials Sciences (CNMS)
  2. Univ. of California, Berkeley, CA (United States); Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)
  3. Univ. of Aveiro (Portugal). CICECO-Aveiro Inst. of Materials
Publication Date:
Research Org.:
Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES); National Science Foundation (NSF); US Army Research Office (ARO); CICECO
OSTI Identifier:
1712714
Alternate Identifier(s):
OSTI ID: 1703886
Grant/Contract Number:  
AC05-00OR22725; DMR-1708615; W911NF-14-1-0104; UIDB/50011/2020; UIDP/50011/2020
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Applied Physics
Additional Journal Information:
Journal Volume: 128; Journal Issue: 17; Journal ID: ISSN 0021-8979
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; Ferroelectric materials; materials properties; electrostatics; piezoelectricity; thin films; piezoresponse force spectroscopy

Citation Formats

Neumayer, Sabine M., Saremi, Sahar, Martin, Lane W., Collins, Liam, Tselev, Alexander, Jesse, Stephen, Kalinin, Sergei V., and Balke, Nina. Piezoresponse amplitude and phase quantified for electromechanical characterization. United States: N. p., 2020. Web. https://doi.org/10.1063/5.0011631.
Neumayer, Sabine M., Saremi, Sahar, Martin, Lane W., Collins, Liam, Tselev, Alexander, Jesse, Stephen, Kalinin, Sergei V., & Balke, Nina. Piezoresponse amplitude and phase quantified for electromechanical characterization. United States. https://doi.org/10.1063/5.0011631
Neumayer, Sabine M., Saremi, Sahar, Martin, Lane W., Collins, Liam, Tselev, Alexander, Jesse, Stephen, Kalinin, Sergei V., and Balke, Nina. Sat . "Piezoresponse amplitude and phase quantified for electromechanical characterization". United States. https://doi.org/10.1063/5.0011631. https://www.osti.gov/servlets/purl/1712714.
@article{osti_1712714,
title = {Piezoresponse amplitude and phase quantified for electromechanical characterization},
author = {Neumayer, Sabine M. and Saremi, Sahar and Martin, Lane W. and Collins, Liam and Tselev, Alexander and Jesse, Stephen and Kalinin, Sergei V. and Balke, Nina},
abstractNote = {Piezoresponse force microscopy (PFM) is a powerful characterization technique to readily image and manipulate the ferroelectric domains. PFM gives an insight into the strength of local piezoelectric coupling and polarization direction through PFM amplitude and phase, respectively. Converting measured arbitrary units into units of effective piezoelectric constant remains a challenge, and insufficient methods are often used. While most quantification efforts have been spent on quantifying the PFM amplitude signal, little attention has been given to the PFM phase, which is often arbitrarily adjusted to fit expectations. This is problematic when investigating materials with unknown or negative sign of the probed effective electrostrictive coefficient or strong frequency dispersion of electromechanical responses, because assumptions about the PFM phase cannot be reliably made. The PFM phase can, however, provide important information on the polarization orientation and the sign of the effective electrostrictive coefficient probed by PFM. Most notably, the orientation of the PFM hysteresis loop is determined by the PFM phase. Moreover, when presenting PFM data as a combined signal, the resulting response can be artificially lowered or asymmetric if the phase data have not been correctly processed. Here, we explain the PFM amplitude quantification process and demonstrate a path to identify the phase offset required to extract correct meaning from the PFM phase data. We explore different sources of phase offsets including the experimental setup, instrumental contributions, and data analysis. We discuss the physical working principles of PFM and develop a strategy to extract physical meaning from the PFM amplitude and phase.},
doi = {10.1063/5.0011631},
journal = {Journal of Applied Physics},
number = 17,
volume = 128,
place = {United States},
year = {2020},
month = {11}
}

Works referenced in this record:

Current and surface charge modified hysteresis loops in ferroelectric thin films
journal, August 2015

  • Balke, Nina; Jesse, Stephen; Li, Qian
  • Journal of Applied Physics, Vol. 118, Issue 7
  • DOI: 10.1063/1.4927811

Differentiating Ferroelectric and Nonferroelectric Electromechanical Effects with Scanning Probe Microscopy
journal, May 2015


Giant elastic tunability in strained BiFeO3 near an electrically induced phase transition
journal, November 2015


Polarization imprint and size effects in mesoscopic ferroelectric structures
journal, July 2001

  • Alexe, M.; Harnagea, C.; Hesse, D.
  • Applied Physics Letters, Vol. 79, Issue 2
  • DOI: 10.1063/1.1385184

The negative piezoelectric effect of the ferroelectric polymer poly(vinylidene fluoride)
journal, October 2015

  • Katsouras, Ilias; Asadi, Kamal; Li, Mengyuan
  • Nature Materials, Vol. 15, Issue 1
  • DOI: 10.1038/nmat4423

Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope
journal, April 2004

  • Zhao, Min-Hua; Wang, Zhong-Lin; Mao, Scott X.
  • Nano Letters, Vol. 4, Issue 4, p. 587-590
  • DOI: 10.1021/nl035198a

Cation–Eutectic Transition via Sublattice Melting in CuInP 2 S 6 /In 4/3 P 2 S 6 van der Waals Layered Crystals
journal, July 2017

  • Susner, Michael A.; Chyasnavichyus, Marius; Puretzky, Alexander A.
  • ACS Nano, Vol. 11, Issue 7
  • DOI: 10.1021/acsnano.7b02695

Giant negative electrostriction and dielectric tunability in a van der Waals layered ferroelectric
journal, February 2019


Nanoscale Electromechanics of Ferroelectric and Biological Systems: A New Dimension in Scanning Probe Microscopy
journal, August 2007


One-Step Mask Etching Strategy Toward Ordered Ferroelectric Pb(Zr0.52Ti0.48)O3 Nanodot Arrays
journal, August 2015

  • Zhang, Xiaoyan; Kang, Mengyang; Huang, Kangrong
  • Nanoscale Research Letters, Vol. 10, Issue 1
  • DOI: 10.1186/s11671-015-1028-7

Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric
journal, April 2019


Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes
journal, August 2016

  • Liu, Fucai; You, Lu; Seyler, Kyle L.
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms12357

Switching properties of self-assembled ferroelectric memory cells
journal, August 1999

  • Alexe, M.; Gruverman, A.; Harnagea, C.
  • Applied Physics Letters, Vol. 75, Issue 8
  • DOI: 10.1063/1.124628

Dual-frequency resonance-tracking atomic force microscopy
journal, October 2007


XCVI. Theory of barium titanate: Part I
journal, October 1949

  • Devonshire, A. F.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 40, Issue 309
  • DOI: 10.1080/14786444908561372

Quantitative measurements of electromechanical response with a combined optical beam and interferometric atomic force microscope
journal, June 2015

  • Labuda, Aleksander; Proksch, Roger
  • Applied Physics Letters, Vol. 106, Issue 25
  • DOI: 10.1063/1.4922210

Upward ferroelectric self-poling in (001) oriented PbZr 0.2 Ti 0.8 O 3 epitaxial films with compressive strain
journal, December 2013

  • Luo, Ying; Li, Xueyan; Chang, Lei
  • AIP Advances, Vol. 3, Issue 12
  • DOI: 10.1063/1.4840595

Quantification of in-contact probe-sample electrostatic forces with dynamic atomic force microscopy
journal, January 2017


Cantilever dynamics in atomic force microscopy
journal, February 2008


Influence of the inhomogeneous field at the tip on quantitative piezoresponse force microscopy
journal, December 2006


Electromechanical detection in scanning probe microscopy: Tip models and materials contrast
journal, July 2007

  • Eliseev, Eugene A.; Kalinin, Sergei V.; Jesse, Stephen
  • Journal of Applied Physics, Vol. 102, Issue 1
  • DOI: 10.1063/1.2749463

Polarization Control of Electron Tunneling into Ferroelectric Surfaces
journal, June 2009


Ferroelectric hysteresis and improved fatigue of PZT (53/47) films fabricated by a simplified sol–gel acetic-acid route
journal, August 2014

  • Rodríguez-Aranda, M. C.; Calderón-Piñar, F.; Espinoza-Beltrán, F. J.
  • Journal of Materials Science: Materials in Electronics, Vol. 25, Issue 11
  • DOI: 10.1007/s10854-014-2237-z

High- T c Layered Ferrielectric Crystals by Coherent Spinodal Decomposition
journal, October 2015


Higher Order Ferroic Switching Induced by Scanning Force Microscopy
journal, June 2001


Ferroelectric or non-ferroelectric: Why so many materials exhibit “ferroelectricity” on the nanoscale
journal, June 2017

  • Vasudevan, Rama K.; Balke, Nina; Maksymovych, Peter
  • Applied Physics Reviews, Vol. 4, Issue 2
  • DOI: 10.1063/1.4979015

Direct studies of domain switching dynamics in thin film ferroelectric capacitors
journal, August 2005

  • Gruverman, A.; Rodriguez, B. J.; Dehoff, C.
  • Applied Physics Letters, Vol. 87, Issue 8
  • DOI: 10.1063/1.2010605

Switching spectroscopy piezoresponse force microscopy of ferroelectric materials
journal, February 2006

  • Jesse, Stephen; Baddorf, Arthur P.; Kalinin, Sergei V.
  • Applied Physics Letters, Vol. 88, Issue 6
  • DOI: 10.1063/1.2172216

Quantitative Electromechanical Atomic Force Microscopy
journal, July 2019


Domain structures and piezoelectric properties of Pb(Zr0.2Ti0.8)O3 nanocapacitors
journal, August 2010

  • Alexe, Marin; Hesse, Dietrich; Gösele, Ulrich
  • Journal of Applied Physics, Vol. 108, Issue 4
  • DOI: 10.1063/1.3475476

Contact resonance atomic force microscopy imaging in air and water using photothermal excitation
journal, August 2015

  • Kocun, Marta; Labuda, Aleksander; Gannepalli, Anil
  • Review of Scientific Instruments, Vol. 86, Issue 8
  • DOI: 10.1063/1.4928105

Flexible ferroelectric element based on van der Waals heteroepitaxy
journal, June 2017


The band excitation method in scanning probe microscopy for rapid mapping of energy dissipation on the nanoscale
journal, September 2007


Diminish electrostatic in piezoresponse force microscopy through longer or ultra-stiff tips
journal, May 2018


Vector Piezoresponse Force Microscopy
journal, May 2006

  • Kalinin, Sergei V.; Rodriguez, Brian J.; Jesse, Stephen
  • Microscopy and Microanalysis, Vol. 12, Issue 03
  • DOI: 10.1017/S1431927606060156

Mechanical Writing of Ferroelectric Polarization
journal, April 2012


Origin of piezoelectric response under a biased scanning probe microscopy tip across a 180 ferroelectric domain wall
journal, October 2012


CIX. Theory of barium titanate— Part II
journal, October 1951

  • Devonshire, A. F.
  • The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, Vol. 42, Issue 333
  • DOI: 10.1080/14786445108561354

Electrostatic-free piezoresponse force microscopy
journal, January 2017

  • Kim, Sungho; Seol, Daehee; Lu, Xiaoli
  • Scientific Reports, Vol. 7, Issue 1
  • DOI: 10.1038/srep41657

An atomic‐resolution atomic‐force microscope implemented using an optical lever
journal, January 1989

  • Alexander, S.; Hellemans, L.; Marti, O.
  • Journal of Applied Physics, Vol. 65, Issue 1
  • DOI: 10.1063/1.342563

Materials contrast in piezoresponse force microscopy
journal, June 2006

  • Kalinin, Sergei V.; Eliseev, Eugene A.; Morozovska, Anna N.
  • Applied Physics Letters, Vol. 88, Issue 23
  • DOI: 10.1063/1.2206992

Ferroelectric thin films: Review of materials, properties, and applications
journal, September 2006

  • Setter, N.; Damjanovic, D.; Eng, L.
  • Journal of Applied Physics, Vol. 100, Issue 5
  • DOI: 10.1063/1.2336999

Ferroelectric switching in Bi 4 Ti 3 O 12 nanorods
journal, September 2012

  • Azodi, M.; Harnagea, C.; Buscaglia, V.
  • IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control, Vol. 59, Issue 9
  • DOI: 10.1109/TUFFC.2012.2405

Piezoelectric and Pyroelectric Properties of Pb(Zr,Ti)O 3 Films for Micro-Sensors and Actuators
journal, April 2003

  • Yang, Jeong-Suong; Kim, Seung-Hyun; Yeom, Jung-Hoon
  • Integrated Ferroelectrics, Vol. 54, Issue 1
  • DOI: 10.1080/714040701

Novel optical approach to atomic force microscopy
journal, September 1988

  • Meyer, Gerhard; Amer, Nabil M.
  • Applied Physics Letters, Vol. 53, Issue 12
  • DOI: 10.1063/1.100061

High-temperature piezoresponse force microscopy
journal, October 2011

  • Bhatia, B.; Karthik, J.; Cahill, D. G.
  • Applied Physics Letters, Vol. 99, Issue 17
  • DOI: 10.1063/1.3652771

Ferroelectrics at the nanoscale
journal, April 2009


Piezoresponse force microscopy and recent advances in nanoscale studies of ferroelectrics
journal, January 2006


Abnormal domain switching in Pb(Zr,Ti)O3 thin film capacitors
journal, December 2008

  • Wu, Aiying; Vilarinho, Paula M.; Wu, Dong
  • Applied Physics Letters, Vol. 93, Issue 26
  • DOI: 10.1063/1.3059566

Piezoresponse Force Microscopy: A Window into Electromechanical Behavior at the Nanoscale
journal, September 2009

  • Bonnell, D. A.; Kalinin, S. V.; Kholkin, A. L.
  • MRS Bulletin, Vol. 34, Issue 9
  • DOI: 10.1557/mrs2009.176

Piezoresponse force microscopy of lead titanate nanograins possibly reaching the limit of ferroelectricity
journal, December 2002

  • Roelofs, A.; Schneller, T.; Szot, K.
  • Applied Physics Letters, Vol. 81, Issue 27
  • DOI: 10.1063/1.1534412

Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future
journal, August 2009


Shape of Local Hysteresis Loops Measured by Means of Piezoresponse Force Microscopy
journal, June 2010


Quantification of surface displacements and electromechanical phenomena via dynamic atomic force microscopy
journal, September 2016


Deep neural networks for understanding noisy data applied to physical property extraction in scanning probe microscopy
journal, February 2019

  • Borodinov, Nikolay; Neumayer, Sabine; Kalinin, Sergei V.
  • npj Computational Materials, Vol. 5, Issue 1
  • DOI: 10.1038/s41524-019-0148-5

Imaging mechanism of piezoresponse force microscopy of ferroelectric surfaces
journal, March 2002


Experimental reconstruction of the contact resonance shape factor for quantification and amplification of bias-induced strain in atomic force microscopy
journal, April 2019

  • Killgore, Jason P.; Deolia, Akshay; Robins, Lawrence
  • Applied Physics Letters, Vol. 114, Issue 13
  • DOI: 10.1063/1.5091803

Imaging space charge regions in Sm-doped ceria using electrochemical strain microscopy
journal, November 2014

  • Chen, Qian Nataly; Adler, Stuart B.; Li, Jiangyu
  • Applied Physics Letters, Vol. 105, Issue 20
  • DOI: 10.1063/1.4901102

Challenges for the determination of piezoelectric constants with piezoresponse force microscopy
journal, December 2007

  • Jungk, Tobias; Hoffmann, Ákos; Soergel, Elisabeth
  • Applied Physics Letters, Vol. 91, Issue 25
  • DOI: 10.1063/1.2827566