DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods

Abstract

Fluorographene (FG) is a promising graphene-derived material with a large bandgap. Currently existing predictions of its fundamental gap (Δf) and optical gap (Δopt) significantly vary when compared with experiment. We provide here an ultimate benchmark of Δf for FG by many-body GW and fixed-node diffusion Monte Carlo (FNDMC) methods. Both approaches independently arrive at Δf ≈ 7.1 ± 0.1 eV. In addition, the Bethe–Salpeter equation enabled us to determine the first exciton binding energy, Eb = 1.92 eV. We also point to the possible misinterpretation problem of the results obtained for gaps of solids by FNDMC with single-reference trial wave functions of Bloch orbitals. We argue why instead of Δopt, in the thermodynamic limit, such an approach results in energy differences that rather correspond to Δf, and we also outline conditions when this case actually applies.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]
  1. Univ. of Ostrava, Ostrava (Czech Republic). Faculty of Science. Dept. of Physics; Slovak Univ. of Technology in Bratislava, Trnava (Slovakia). Faculty of Materials Science and Technology in Trnava. ATRI
  2. Univ. of Ostrava, Ostrava (Czech Republic). Faculty of Science. Dept. of Physics
  3. Slovak Univ. of Technology in Bratislava, Trnava (Slovakia). Faculty of Materials Science and Technology in Trnava. ATRI
  4. North Carolina State Univ., Raleigh, NC (United States). Dept. of Physics and CHiPS
Publication Date:
Research Org.:
North Carolina State University, Raleigh, NC (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; Czech Science Foundation; Slovak Research and Development Agency; European Regional Development Fund; USDOE
OSTI Identifier:
1851609
Alternate Identifier(s):
OSTI ID: 1712504
Grant/Contract Number:  
SC0012314; 18-25128S; 18-24321Y; APVV-18-0161; ITMS2014+:313011W085; de-sc0012314
Resource Type:
Accepted Manuscript
Journal Name:
Journal of Chemical Physics
Additional Journal Information:
Journal Volume: 153; Journal Issue: 18; Journal ID: ISSN 0021-9606
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY; 71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Chemistry; physics; quasiparticle; graphene; GW-approximation; Bethe-Salpeter equation; Monte Carlo methods; correlation energy; triplet state; excitonic effects

Citation Formats

Dubecký, Matúš, Karlický, František, Minárik, Stanislav, and Mitas, Lubos. Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods. United States: N. p., 2020. Web. doi:10.1063/5.0030952.
Dubecký, Matúš, Karlický, František, Minárik, Stanislav, & Mitas, Lubos. Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods. United States. https://doi.org/10.1063/5.0030952
Dubecký, Matúš, Karlický, František, Minárik, Stanislav, and Mitas, Lubos. Sat . "Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods". United States. https://doi.org/10.1063/5.0030952. https://www.osti.gov/servlets/purl/1851609.
@article{osti_1851609,
title = {Fundamental gap of fluorographene by many-body GW and fixed-node diffusion Monte Carlo methods},
author = {Dubecký, Matúš and Karlický, František and Minárik, Stanislav and Mitas, Lubos},
abstractNote = {Fluorographene (FG) is a promising graphene-derived material with a large bandgap. Currently existing predictions of its fundamental gap (Δf) and optical gap (Δopt) significantly vary when compared with experiment. We provide here an ultimate benchmark of Δf for FG by many-body GW and fixed-node diffusion Monte Carlo (FNDMC) methods. Both approaches independently arrive at Δf ≈ 7.1 ± 0.1 eV. In addition, the Bethe–Salpeter equation enabled us to determine the first exciton binding energy, Eb = 1.92 eV. We also point to the possible misinterpretation problem of the results obtained for gaps of solids by FNDMC with single-reference trial wave functions of Bloch orbitals. We argue why instead of Δopt, in the thermodynamic limit, such an approach results in energy differences that rather correspond to Δf, and we also outline conditions when this case actually applies.},
doi = {10.1063/5.0030952},
journal = {Journal of Chemical Physics},
number = 18,
volume = 153,
place = {United States},
year = {Sat Nov 14 00:00:00 EST 2020},
month = {Sat Nov 14 00:00:00 EST 2020}
}

Works referenced in this record:

Structures of fluorinated graphene and their signatures
journal, March 2011


Electronic Structures and Optical Properties of Partially and Fully Fluorinated Graphene
journal, January 2015


Quantum Monte Carlo methods: Quantum Monte Carlo methods
journal, April 2011

  • Lüchow, Arne
  • Wiley Interdisciplinary Reviews: Computational Molecular Science, Vol. 1, Issue 3
  • DOI: 10.1002/wcms.40

Accurate many-body calculation of electronic and optical band gap of bulk hexagonal boron nitride
journal, January 2019

  • Kolos, Miroslav; Karlický, František
  • Physical Chemistry Chemical Physics, Vol. 21, Issue 7
  • DOI: 10.1039/c8cp07328g

A diffusion Monte Carlo algorithm with very small time‐step errors
journal, August 1993

  • Umrigar, C. J.; Nightingale, M. P.; Runge, K. J.
  • The Journal of Chemical Physics, Vol. 99, Issue 4
  • DOI: 10.1063/1.465195

First Principles Methods: A Perspective from Quantum Monte Carlo
journal, December 2013

  • Morales, Miguel; Clay, Raymond; Pierleoni, Carlo
  • Entropy, Vol. 16, Issue 1
  • DOI: 10.3390/e16010287

Optimized Jastrow–Slater wave functions for ground and excited states: Application to the lowest states of ethene
journal, June 2004

  • Schautz, Friedemann; Filippi, Claudia
  • The Journal of Chemical Physics, Vol. 120, Issue 23
  • DOI: 10.1063/1.1752881

Rydberg states with quantum Monte Carlo
journal, March 2006

  • Bande, Annika; Lüchow, Arne; Della Sala, Fabio
  • The Journal of Chemical Physics, Vol. 124, Issue 11
  • DOI: 10.1063/1.2180773

Graphene Fluoride: A Stable Stoichiometric Graphene Derivative and its Chemical Conversion to Graphene
journal, November 2010

  • Zbořil, Radek; Karlický, František; Bourlinos, Athanasios B.
  • Small, Vol. 6, Issue 24
  • DOI: 10.1002/smll.201001401

QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials
journal, September 2009

  • Giannozzi, Paolo; Baroni, Stefano; Bonini, Nicola
  • Journal of Physics: Condensed Matter, Vol. 21, Issue 39, Article No. 395502
  • DOI: 10.1088/0953-8984/21/39/395502

Fixed‐node quantum Monte Carlo for molecules a) b)
journal, December 1982

  • Reynolds, Peter J.; Ceperley, David M.; Alder, Berni J.
  • The Journal of Chemical Physics, Vol. 77, Issue 11
  • DOI: 10.1063/1.443766

Nonlocal pseudopotentials and diffusion Monte Carlo
journal, September 1991

  • Mitáš, Luboš; Shirley, Eric L.; Ceperley, David M.
  • The Journal of Chemical Physics, Vol. 95, Issue 5
  • DOI: 10.1063/1.460849

Ewald summation for systems with slab geometry
journal, August 1999

  • Yeh, In-Chul; Berkowitz, Max L.
  • The Journal of Chemical Physics, Vol. 111, Issue 7
  • DOI: 10.1063/1.479595

Energy-consistent pseudopotentials for quantum Monte Carlo calculations
journal, June 2007

  • Burkatzki, M.; Filippi, C.; Dolg, M.
  • The Journal of Chemical Physics, Vol. 126, Issue 23
  • DOI: 10.1063/1.2741534

Role of Polar Phonons in the Photo Excited State of Metal Halide Perovskites
journal, June 2016

  • Bokdam, Menno; Sander, Tobias; Stroppa, Alessandro
  • Scientific Reports, Vol. 6, Issue 1
  • DOI: 10.1038/srep28618

Fluorographene: A Wide Bandgap Semiconductor with Ultraviolet Luminescence
journal, January 2011

  • Jeon, Ki-Joon; Lee, Zonghoon; Pollak, Elad
  • ACS Nano, Vol. 5, Issue 2
  • DOI: 10.1021/nn1025274

Understanding band gaps of solids in generalized Kohn–Sham theory
journal, March 2017

  • Perdew, John P.; Yang, Weitao; Burke, Kieron
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 11
  • DOI: 10.1073/pnas.1621352114

Influence of single particle orbital sets and configuration selection on multideterminant wavefunctions in quantum Monte Carlo
journal, June 2015

  • Clay, Raymond C.; Morales, Miguel A.
  • The Journal of Chemical Physics, Vol. 142, Issue 23
  • DOI: 10.1063/1.4921984

Electronic and optical properties of fluorinated graphene: A many-body perturbation theory study
journal, March 2013


QWalk: A quantum Monte Carlo program for electronic structure
journal, May 2009

  • Wagner, Lucas K.; Bajdich, Michal; Mitas, Lubos
  • Journal of Computational Physics, Vol. 228, Issue 9
  • DOI: 10.1016/j.jcp.2009.01.017

Fluorographene: A Two-Dimensional Counterpart of Teflon
journal, November 2010


Finite-size errors in continuum quantum Monte Carlo calculations
journal, September 2008


Band Gaps and Optical Spectra of Chlorographene, Fluorographene and Graphane from G 0 W 0 , GW 0 and GW Calculations on Top of PBE and HSE06 Orbitals
journal, August 2013

  • Karlický, František; Otyepka, Michal
  • Journal of Chemical Theory and Computation, Vol. 9, Issue 9
  • DOI: 10.1021/ct400476r

A new look at correlation energy in atomic and molecular systems. II. The application of the Green’s function Monte Carlo method to LiH
journal, July 1982

  • Moskowitz, Jules W.; Schmidt, K. E.; Lee, Michael A.
  • The Journal of Chemical Physics, Vol. 77, Issue 1
  • DOI: 10.1063/1.443612

Point-defect optical transitions and thermal ionization energies from quantum Monte Carlo methods: Application to the F -center defect in MgO
journal, April 2013


Optical Gaps and Excitonic Properties of 2D Materials by Hybrid Time-Dependent Density Functional Theory: Evidences for Monolayers and Prospects for van der Waals Heterostructures
journal, August 2020

  • Ketolainen, Tomi; Macháčová, Nikola; Karlický, František
  • Journal of Chemical Theory and Computation, Vol. 16, Issue 9
  • DOI: 10.1021/acs.jctc.0c00387

Photoluminescence from nanocrystalline graphite monofluoride
journal, October 2010

  • Wang, Bei; Sparks, Justin R.; Gutierrez, Humberto R.
  • Applied Physics Letters, Vol. 97, Issue 14
  • DOI: 10.1063/1.3491265

Reactivity of Fluorographene: A Facile Way toward Graphene Derivatives
journal, April 2015

  • Dubecký, Matúš; Otyepková, Eva; Lazar, Petr
  • The Journal of Physical Chemistry Letters, Vol. 6, Issue 8
  • DOI: 10.1021/acs.jpclett.5b00565

The Kohn–Sham gap, the fundamental gap and the optical gap: the physical meaning of occupied and virtual Kohn–Sham orbital energies
journal, January 2013

  • Baerends, E. J.; Gritsenko, O. V.; van Meer, R.
  • Physical Chemistry Chemical Physics, Vol. 15, Issue 39
  • DOI: 10.1039/c3cp52547c

Halogenated Graphenes: Rapidly Growing Family of Graphene Derivatives
journal, July 2013

  • Karlický, František; Kumara Ramanatha Datta, Kasibhatta; Otyepka, Michal
  • ACS Nano, Vol. 7, Issue 8
  • DOI: 10.1021/nn4024027

Fractional Charge by Fixed-Node Diffusion Monte Carlo Method
journal, October 2019


Disentanglement of triplet and singlet states of azobenzene: direct EELS detection and QMC modeling
journal, January 2011

  • Dubecký, M.; Derian, R.; Horváthová, L.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 47
  • DOI: 10.1039/c1cp22520k

A random‐walk simulation of the Schrödinger equation: H + 3
journal, August 1975

  • Anderson, James B.
  • The Journal of Chemical Physics, Vol. 63, Issue 4
  • DOI: 10.1063/1.431514

Quantum Monte Carlo for Ab Initio calculations of energy-relevant materials
journal, August 2013

  • Wagner, Lucas K.
  • International Journal of Quantum Chemistry, Vol. 114, Issue 2
  • DOI: 10.1002/qua.24526

Quantum Monte Carlo of nitrogen: Atom, dimer, atomic, and molecular solids
journal, April 1994


Properties of Fluorinated Graphene Films
journal, August 2010

  • Robinson, Jeremy T.; Burgess, James S.; Junkermeier, Chad E.
  • Nano Letters, Vol. 10, Issue 8
  • DOI: 10.1021/nl101437p

Fluorographane C2FH: Stable and wide band gap insulator with huge excitonic effect
journal, August 2018


A new generation of effective core potentials from correlated calculations: 4s and 4p main group elements and first row additions
journal, October 2019

  • Wang, Guangming; Annaberdiyev, Abdulgani; Melton, Cody A.
  • The Journal of Chemical Physics, Vol. 151, Issue 14
  • DOI: 10.1063/1.5121006

Calculating excitons, plasmons, and quasiparticles in 2D materials and van der Waals heterostructures
journal, June 2017


Noncovalent Interactions by Quantum Monte Carlo
journal, April 2016


Toward reliable density functional methods without adjustable parameters: The PBE0 model
journal, April 1999

  • Adamo, Carlo; Barone, Vincenzo
  • The Journal of Chemical Physics, Vol. 110, Issue 13
  • DOI: 10.1063/1.478522

Discovering correlated fermions using quantum Monte Carlo
journal, August 2016


Excited states of methylene from quantum Monte Carlo
journal, September 2009

  • Zimmerman, Paul M.; Toulouse, Julien; Zhang, Zhiyong
  • The Journal of Chemical Physics, Vol. 131, Issue 12
  • DOI: 10.1063/1.3220671

Applications of quantum Monte Carlo methods in condensed systems
journal, January 2011


Tuning of fluorine content in graphene: towards large-scale production of stoichiometric fluorographene
journal, January 2015

  • Mazánek, Vlastimil; Jankovský, Ondřej; Luxa, Jan
  • Nanoscale, Vol. 7, Issue 32
  • DOI: 10.1039/c5nr03243a

Ground and excited electronic states of azobenzene: A quantum Monte Carlo study
journal, December 2010

  • Dubecký, M.; Derian, R.; Mitas, L.
  • The Journal of Chemical Physics, Vol. 133, Issue 24
  • DOI: 10.1063/1.3506028

Quantum Monte Carlo and Related Approaches
journal, December 2011

  • Austin, Brian M.; Zubarev, Dmitry Yu.; Lester, William A.
  • Chemical Reviews, Vol. 112, Issue 1
  • DOI: 10.1021/cr2001564

Monte Carlo simulation of a many-fermion study
journal, October 1977


Application of Diffusion Monte Carlo to Materials Dominated by van der Waals Interactions
journal, June 2014

  • Benali, Anouar; Shulenburger, Luke; Romero, Nichols A.
  • Journal of Chemical Theory and Computation, Vol. 10, Issue 8
  • DOI: 10.1021/ct5003225

Quasiparticle and excitonic gaps of one-dimensional carbon chains
journal, January 2016

  • Mostaani, E.; Monserrat, B.; Drummond, N. D.
  • Physical Chemistry Chemical Physics, Vol. 18, Issue 22
  • DOI: 10.1039/c5cp07891a

Many-body electronic structure of LaScO 3 by real-space quantum Monte Carlo
journal, July 2020


Multideterminant Wave Functions in Quantum Monte Carlo
journal, June 2012

  • Morales, Miguel A.; McMinis, Jeremy; Clark, Bryan K.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 7
  • DOI: 10.1021/ct3003404

Fermion nodes
journal, June 1991

  • Ceperley, D. M.
  • Journal of Statistical Physics, Vol. 63, Issue 5-6
  • DOI: 10.1007/bf01030009