skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide

Abstract

The thermal stability and decomposition pathway of formamidinium iodide (FAI, HC(NH2)2I) in contact with NiO and TiO2 are investigated by combined experimental studies and density functional theory (DFT) calculations. Based on the decomposition temperature, we find the stability decreases as FAI ~ FAI + TiO2 > FAI + NiO. Moreover, FAPbI3 in contact with NiO and TiO2 shows similar thermal stability behaviour as FAI. The bulk decomposition of FAI occurs via the formation of sym-triazine, which can also produce HCN, and NH4I at ~ 280 °C, which further decomposes to NH3 and HI above 300 °C. When FAI contacts NiO, interfacial reaction triggers decomposition at a much low temperature (~200 °C), resulting in the formation of NiI2 as the solid product while releasing NH3 and H2O into the gas phase; sym-triazine and HCN are observed near FAI bulk decomposition temperature. In contrast, when FAI contacts TiO2, decomposition temperature is similar to bulk FAI; however, HCN is released at a lower temperature (~ 260 °C) compared to sym-triazine. The difference in the degradation behavior of FAI with NiO and TiO2 is elucidated using DFT calculations. Our results show that the interfacial reaction between the organic component of perovskite material and NiOmore » occurs similarly for MA and FA, which thereby can induce device instability.« less

Authors:
ORCiD logo [1];  [1];  [2]; ORCiD logo [2]; ORCiD logo [1]
  1. Department of Materials Science and Engineering, University of Texas at Dallas, Richardson, USA
  2. Department of Materials Science and Engineering, Hanbat National University, Daejeon, Republic of Korea
Publication Date:
Research Org.:
Univ. of Texas at Dallas, Richardson, TX (United States)
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Renewable Power Office. Solar Energy Technologies Office; National Science Foundation (NSF); National Research Foundation of Korea (NRF); Korea Inst. of Energy Technology Evalutation and Planning (KETEP)
OSTI Identifier:
1712497
Alternate Identifier(s):
OSTI ID: 1688430
Grant/Contract Number:  
EE0008544; CBET-1916612; NRF-2015M1A2A2055836; NRF-2018R1A2B6007888; NRF-2017M3A7B4041698; 20183010013820
Resource Type:
Published Article
Journal Name:
Materials Advances
Additional Journal Information:
Journal Name: Materials Advances Journal Volume: 1 Journal Issue: 9; Journal ID: ISSN 2633-5409
Publisher:
Royal Society of Chemistry (RSC)
Country of Publication:
Country unknown/Code not available
Language:
English
Subject:
14 SOLAR ENERGY

Citation Formats

Thampy, Sampreetha, Zhang, Boya, Park, Jong-Goo, Hong, Ki-Ha, and Hsu, Julia W. P.. Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide. Country unknown/Code not available: N. p., 2020. Web. https://doi.org/10.1039/D0MA00624F.
Thampy, Sampreetha, Zhang, Boya, Park, Jong-Goo, Hong, Ki-Ha, & Hsu, Julia W. P.. Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide. Country unknown/Code not available. https://doi.org/10.1039/D0MA00624F
Thampy, Sampreetha, Zhang, Boya, Park, Jong-Goo, Hong, Ki-Ha, and Hsu, Julia W. P.. Mon . "Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide". Country unknown/Code not available. https://doi.org/10.1039/D0MA00624F.
@article{osti_1712497,
title = {Bulk and interfacial decomposition of formamidinium iodide (HC(NH 2 ) 2 I) in contact with metal oxide},
author = {Thampy, Sampreetha and Zhang, Boya and Park, Jong-Goo and Hong, Ki-Ha and Hsu, Julia W. P.},
abstractNote = {The thermal stability and decomposition pathway of formamidinium iodide (FAI, HC(NH2)2I) in contact with NiO and TiO2 are investigated by combined experimental studies and density functional theory (DFT) calculations. Based on the decomposition temperature, we find the stability decreases as FAI ~ FAI + TiO2 > FAI + NiO. Moreover, FAPbI3 in contact with NiO and TiO2 shows similar thermal stability behaviour as FAI. The bulk decomposition of FAI occurs via the formation of sym-triazine, which can also produce HCN, and NH4I at ~ 280 °C, which further decomposes to NH3 and HI above 300 °C. When FAI contacts NiO, interfacial reaction triggers decomposition at a much low temperature (~200 °C), resulting in the formation of NiI2 as the solid product while releasing NH3 and H2O into the gas phase; sym-triazine and HCN are observed near FAI bulk decomposition temperature. In contrast, when FAI contacts TiO2, decomposition temperature is similar to bulk FAI; however, HCN is released at a lower temperature (~ 260 °C) compared to sym-triazine. The difference in the degradation behavior of FAI with NiO and TiO2 is elucidated using DFT calculations. Our results show that the interfacial reaction between the organic component of perovskite material and NiO occurs similarly for MA and FA, which thereby can induce device instability.},
doi = {10.1039/D0MA00624F},
journal = {Materials Advances},
number = 9,
volume = 1,
place = {Country unknown/Code not available},
year = {2020},
month = {12}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
https://doi.org/10.1039/D0MA00624F

Save / Share:

Works referenced in this record:

Generalized Gradient Approximation Made Simple
journal, October 1996

  • Perdew, John P.; Burke, Kieron; Ernzerhof, Matthias
  • Physical Review Letters, Vol. 77, Issue 18, p. 3865-3868
  • DOI: 10.1103/PhysRevLett.77.3865

Progress, highlights and perspectives on NiO in perovskite photovoltaics
journal, January 2020

  • Di Girolamo, Diego; Di Giacomo, Francesco; Matteocci, Fabio
  • Chemical Science, Vol. 11, Issue 30
  • DOI: 10.1039/D0SC02859B

Is Formamidinium Always More Stable than Methylammonium?
journal, March 2020


How far are we from attaining 10-year lifetime for metal halide perovskite solar cells?
journal, April 2020


Progress on Perovskite Materials and Solar Cells with Mixed Cations and Halide Anions
journal, July 2017

  • Ono, Luis K.; Juarez-Perez, Emilio J.; Qi, Yabing
  • ACS Applied Materials & Interfaces, Vol. 9, Issue 36
  • DOI: 10.1021/acsami.7b06001

Novel inorganic electron transport layers for planar perovskite solar cells: Progress and prospective
journal, February 2020


Intrinsic thermal decomposition pathways of lead halide perovskites APbX3
journal, August 2020

  • Akbulatov, Azat F.; Martynenko, Vyacheslav M.; Frolova, Lyubov A.
  • Solar Energy Materials and Solar Cells, Vol. 213
  • DOI: 10.1016/j.solmat.2020.110559

The Molybdenum Oxide Interface Limits the High-Temperature Operational Stability of Unencapsulated Perovskite Solar Cells
journal, June 2020


Projector augmented-wave method
journal, December 1994


NiO x Hole Transport Layer for Perovskite Solar Cells with Improved Stability and Reproducibility
journal, May 2017


Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
journal, July 1996


Photodecomposition and thermal decomposition in methylammonium halide lead perovskites and inferred design principles to increase photovoltaic device stability
journal, January 2018

  • Juarez-Perez, Emilio J.; Ono, Luis K.; Maeda, Maki
  • Journal of Materials Chemistry A, Vol. 6, Issue 20
  • DOI: 10.1039/C8TA03501F

A study on the nature of the thermal decomposition of methylammonium lead iodide perovskite, CH 3 NH 3 PbI 3 : an attempt to rationalise contradictory experimental results
journal, January 2017

  • Latini, Alessandro; Gigli, Guido; Ciccioli, Andrea
  • Sustainable Energy & Fuels, Vol. 1, Issue 6
  • DOI: 10.1039/C7SE00114B

Probing the origins of photodegradation in organic–inorganic metal halide perovskites with time-resolved mass spectrometry
journal, January 2018

  • Song, Zhaoning; Wang, Changlei; Phillips, Adam B.
  • Sustainable Energy & Fuels, Vol. 2, Issue 11
  • DOI: 10.1039/C8SE00358K

Interfacial Effects during Rapid Lamination within MAPbI 3 Thin Films and Solar Cells
journal, June 2019

  • Dunlap-Shohl, Wiley A.; Li, Tianyang; Mitzi, David B.
  • ACS Applied Energy Materials, Vol. 2, Issue 7
  • DOI: 10.1021/acsaem.9b00747

The nature of Ni-O pairs for ethane activation on NiO(100) and NiO(110) surfaces
journal, September 2019


Mixed cation hybrid lead halide perovskites with enhanced performance and stability
journal, January 2017

  • Xu, Feng; Zhang, Taiyang; Li, Ge
  • Journal of Materials Chemistry A, Vol. 5, Issue 23
  • DOI: 10.1039/C7TA00042A

Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture
journal, October 2018

  • Turren-Cruz, Silver-Hamill; Hagfeldt, Anders; Saliba, Michael
  • Science, Vol. 362, Issue 6413
  • DOI: 10.1126/science.aat3583

Initial reduction of the NiO(100) surface in hydrogen
journal, July 2013

  • Xu, Qiang; Cheah, Singfoong; Zhao, Yufeng
  • The Journal of Chemical Physics, Vol. 139, Issue 2
  • DOI: 10.1063/1.4812824

Commentary: The Materials Project: A materials genome approach to accelerating materials innovation
journal, July 2013

  • Jain, Anubhav; Ong, Shyue Ping; Hautier, Geoffroy
  • APL Materials, Vol. 1, Issue 1
  • DOI: 10.1063/1.4812323

Degradation of the Formamidinium Cation and the Quantification of the Formamidinium–Methylammonium Ratio in Lead Iodide Hybrid Perovskites by Nuclear Magnetic Resonance Spectroscopy
journal, February 2018

  • Van Gompel, Wouter T. M.; Herckens, Roald; Reekmans, Gunter
  • The Journal of Physical Chemistry C, Vol. 122, Issue 8
  • DOI: 10.1021/acs.jpcc.7b09805

Cesium-containing triple cation perovskite solar cells: improved stability, reproducibility and high efficiency
journal, January 2016

  • Saliba, Michael; Matsui, Taisuke; Seo, Ji-Youn
  • Energy & Environmental Science, Vol. 9, Issue 6
  • DOI: 10.1039/C5EE03874J

Linking Chemistry at the TiO 2 /CH 3 NH 3 PbI 3 Interface to Current–Voltage Hysteresis
journal, May 2017


Thermal degradation of CH 3 NH 3 PbI 3 perovskite into NH 3 and CH 3 I gases observed by coupled thermogravimetry–mass spectrometry analysis
journal, January 2016

  • Juarez-Perez, Emilio J.; Hawash, Zafer; Raga, Sonia R.
  • Energy & Environmental Science, Vol. 9, Issue 11
  • DOI: 10.1039/C6EE02016J

Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data
journal, February 2009


Synthesis of the sym-Triazine System. I. Trimerization and Cotrimerization of Amidines
journal, March 1959

  • Schaefer, Fred C.; Hechenbleikner, Ingenuin; Peters, Grace A.
  • Journal of the American Chemical Society, Vol. 81, Issue 6
  • DOI: 10.1021/ja01515a046

Temperature-Dependent Thermal Decomposition Pathway of Organic–Inorganic Halide Perovskite Materials
journal, September 2019


Critical analysis and extension of the Hirshfeld atoms in molecules
journal, April 2007

  • Bultinck, Patrick; Van Alsenoy, Christian; Ayers, Paul W.
  • The Journal of Chemical Physics, Vol. 126, Issue 14
  • DOI: 10.1063/1.2715563

Prospects for Mitigating Intrinsic Organic Decomposition in Methylammonium Lead Triiodide Perovskite
journal, April 2018


Degradation mechanisms in mixed-cation and mixed-halide Cs x FA 1−x Pb(Br y I 1−y ) 3 perovskite films under ambient conditions
journal, January 2020

  • Marchezi, Paulo Ernesto; Therézio, Eralci Moreira; Szostak, Rodrigo
  • Journal of Materials Chemistry A, Vol. 8, Issue 18
  • DOI: 10.1039/D0TA01201G

Overcoming Redox Reactions at Perovskite-Nickel Oxide Interfaces to Boost Voltages in Perovskite Solar Cells
journal, August 2020


Unraveling the Impact of Hole Transport Materials on Photostability of Perovskite Films and p–i–n Solar Cells
journal, April 2020

  • Boldyreva, Aleksandra G.; Zhidkov, Ivan S.; Tsarev, Sergey
  • ACS Applied Materials & Interfaces, Vol. 12, Issue 16
  • DOI: 10.1021/acsami.0c01027

Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance
journal, September 2016


Ab initiomolecular dynamics for liquid metals
journal, January 1993


Thermodynamics and the Intrinsic Stability of Lead Halide Perovskites CH 3 NH 3 PbX 3
journal, June 2018


How to Make over 20% Efficient Perovskite Solar Cells in Regular ( n–i–p ) and Inverted ( p–i–n ) Architectures
journal, June 2018


Formamidinium and Cesium Hybridization for Photo- and Moisture-Stable Perovskite Solar Cell
journal, September 2015

  • Lee, Jin-Wook; Kim, Deok-Hwan; Kim, Hui-Seon
  • Advanced Energy Materials, Vol. 5, Issue 20
  • DOI: 10.1002/aenm.201501310

Perovskite processing for photovoltaics: a spectro-thermal evaluation
journal, January 2014

  • Williams, Alice E.; Holliman, Peter J.; Carnie, Matthew J.
  • J. Mater. Chem. A, Vol. 2, Issue 45
  • DOI: 10.1039/C4TA04725G

Thermal degradation of formamidinium based lead halide perovskites into sym -triazine and hydrogen cyanide observed by coupled thermogravimetry-mass spectrometry analysis
journal, January 2019

  • Juarez-Perez, Emilio J.; Ono, Luis K.; Qi, Yabing
  • Journal of Materials Chemistry A, Vol. 7, Issue 28
  • DOI: 10.1039/C9TA06058H

Altered Stability and Degradation Pathway of CH 3 NH 3 PbI 3 in Contact with Metal Oxide
journal, March 2020


Effects of Cd Diffusion and Doping in High-Performance Perovskite Solar Cells Using CdS as Electron Transport Layer
journal, July 2016

  • Dunlap-Shohl, Wiley A.; Younts, Robert; Gautam, Bhoj
  • The Journal of Physical Chemistry C, Vol. 120, Issue 30
  • DOI: 10.1021/acs.jpcc.6b05406

Influence of Ion Migration from ITO and SiO 2 Substrates on Photo and Thermal Stability of CH 3 NH 3 SnI 3 Hybrid Perovskite
journal, June 2020

  • Zhidkov, Ivan S.; Boukhvalov, Danil W.; Kukharenko, Andrey I.
  • The Journal of Physical Chemistry C, Vol. 124, Issue 27
  • DOI: 10.1021/acs.jpcc.0c04621

Light or Heat: What Is Killing Lead Halide Perovskites under Solar Cell Operation Conditions?
journal, December 2019

  • Akbulatov, Azat F.; Frolova, Lyubov A.; Dremova, Nadezhda N.
  • The Journal of Physical Chemistry Letters, Vol. 11, Issue 1
  • DOI: 10.1021/acs.jpclett.9b03308