DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Nuclear liquid-gas phase transition with machine learning

ORCiD logo; ; ; ORCiD logo; ; ;
Publication Date:
Sponsoring Org.:
OSTI Identifier:
Grant/Contract Number:  
FG02-93ER40773; de-sc0015266
Resource Type:
Published Article
Journal Name:
Physical Review Research
Additional Journal Information:
Journal Name: Physical Review Research Journal Volume: 2 Journal Issue: 4; Journal ID: ISSN 2643-1564
American Physical Society
Country of Publication:
United States

Citation Formats

Wang, Rui, Ma, Yu-Gang, Wada, R., Chen, Lie-Wen, He, Wan-Bing, Liu, Huan-Ling, and Sun, Kai-Jia. Nuclear liquid-gas phase transition with machine learning. United States: N. p., 2020. Web. doi:10.1103/PhysRevResearch.2.043202.
Wang, Rui, Ma, Yu-Gang, Wada, R., Chen, Lie-Wen, He, Wan-Bing, Liu, Huan-Ling, & Sun, Kai-Jia. Nuclear liquid-gas phase transition with machine learning. United States.
Wang, Rui, Ma, Yu-Gang, Wada, R., Chen, Lie-Wen, He, Wan-Bing, Liu, Huan-Ling, and Sun, Kai-Jia. Mon . "Nuclear liquid-gas phase transition with machine learning". United States.
title = {Nuclear liquid-gas phase transition with machine learning},
author = {Wang, Rui and Ma, Yu-Gang and Wada, R. and Chen, Lie-Wen and He, Wan-Bing and Liu, Huan-Ling and Sun, Kai-Jia},
abstractNote = {},
doi = {10.1103/PhysRevResearch.2.043202},
journal = {Physical Review Research},
number = 4,
volume = 2,
place = {United States},
year = {2020},
month = {11}

Works referenced in this record:

Identifying the nature of the QCD transition in relativistic collision of heavy nuclei with deep learning
journal, June 2020

Multiplicity derivative: A new signature of a first-order phase transition in intermediate-energy heavy-ion collisions
journal, June 2017

Auto-association by multilayer perceptrons and singular value decomposition
journal, September 1988

  • Bourlard, H.; Kamp, Y.
  • Biological Cybernetics, Vol. 59, Issue 4-5
  • DOI: 10.1007/BF00332918

Critical behavior in light nuclear systems: Experimental aspects
journal, May 2005

Finite-size scaling phenomenon of nuclear liquid-gas phase transition probes
journal, May 2019

An equation-of-state-meter of quantum chromodynamics transition from deep learning
journal, January 2018

Regressive and generative neural networks for scalar field theory
journal, July 2019

Shannon information entropy in heavy-ion collisions
journal, March 2018

Nuclear Fragment Mass Yields from High-Energy Proton-Nucleus Interactions
journal, November 1982

Limiting Temperatures and the Equation of State of Nuclear Matter
journal, November 2002

Deep learning
journal, May 2015

  • LeCun, Yann; Bengio, Yoshua; Hinton, Geoffrey
  • Nature, Vol. 521, Issue 7553
  • DOI: 10.1038/nature14539

Liquid to Vapor Phase Transition in Excited Nuclei
journal, January 2002

Experimental Evidence for a Liquid-Gas Phase Transition in Nuclear Systems
journal, February 1984

Caloric curves and critical behavior in nuclei
journal, March 2002

Experimental liquid-gas phase transition signals and reaction dynamics
journal, February 2019

Constraining Effective Field Theories with Machine Learning
journal, September 2018

Thermal and transport properties in central heavy-ion reactions around a few hundred MeV/nucleon
journal, October 2016

Machine Learning Phases of Strongly Correlated Fermions
journal, August 2017

Shear viscosity of neutron-rich nucleonic matter near its liquid–gas phase transition
journal, November 2013

Jet-images — deep learning edition
journal, July 2016

  • de Oliveira, Luke; Kagan, Michael; Mackey, Lester
  • Journal of High Energy Physics, Vol. 2016, Issue 7
  • DOI: 10.1007/JHEP07(2016)069

Deep-learning top taggers or the end of QCD?
journal, May 2017

  • Kasieczka, Gregor; Plehn, Tilman; Russell, Michael
  • Journal of High Energy Physics, Vol. 2017, Issue 5
  • DOI: 10.1007/JHEP05(2017)006

Fast automated analysis of strong gravitational lenses with convolutional neural networks
journal, August 2017

  • Hezaveh, Yashar D.; Levasseur, Laurence Perreault; Marshall, Philip J.
  • Nature, Vol. 548, Issue 7669
  • DOI: 10.1038/nature23463

ROOT — An object oriented data analysis framework
journal, April 1997

  • Brun, Rene; Rademakers, Fons
  • Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, Vol. 389, Issue 1-2
  • DOI: 10.1016/S0168-9002(97)00048-X

Microscopic model approaches to fragmentation of nuclei and phase transitions in nuclear matter
journal, August 2001

Liquid–Gas phase transition in nuclei
journal, March 2019

Bimodality as a Signal of a Liquid-Gas Phase Transition in Nuclei?
journal, December 2005

A machine learning study to identify spinodal clumping in high energy nuclear collisions
journal, December 2019

  • Steinheimer, Jan; Pang, Long-Gang; Zhou, Kai
  • Journal of High Energy Physics, Vol. 2019, Issue 12
  • DOI: 10.1007/JHEP12(2019)122

Identifying topological order through unsupervised machine learning
journal, May 2019

Probing the Nuclear Liquid-Gas Phase Transition
journal, August 1995

Measuring the temperature of hot nuclear fragments
journal, October 2010

Searching for exotic particles in high-energy physics with deep learning
journal, July 2014

  • Baldi, P.; Sadowski, P.; Whiteson, D.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5308

Phase transitions of stored laser-cooled ions
journal, July 1988

  • Blümel, R.; Chen, J. M.; Peik, E.
  • Nature, Vol. 334, Issue 6180
  • DOI: 10.1038/334309a0

Universal Fluctuations in Heavy-Ion Collisions in the Fermi Energy Domain
journal, April 2001

Light nuclei production as a probe of the QCD phase diagram
journal, June 2018

Machine learning: Trends, perspectives, and prospects
journal, July 2015

Application of Information Theory in Nuclear Liquid Gas Phase Transition
journal, November 1999

Discovering phases, phase transitions, and crossovers through unsupervised machine learning: A critical examination
journal, June 2017

A structural approach to relaxation in glassy liquids
journal, February 2016

  • Schoenholz, S. S.; Cubuk, E. D.; Sussman, D. M.
  • Nature Physics, Vol. 12, Issue 5
  • DOI: 10.1038/nphys3644

Learning phase transitions by confusion
journal, February 2017

  • van Nieuwenburg, Evert P. L.; Liu, Ye-Hua; Huber, Sebastian D.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4037

Solving the quantum many-body problem with artificial neural networks
journal, February 2017

Machine learning phases of matter
journal, February 2017

  • Carrasquilla, Juan; Melko, Roger G.
  • Nature Physics, Vol. 13, Issue 5
  • DOI: 10.1038/nphys4035

Neural-network quantum state tomography
journal, February 2018

Surveying the nuclear caloric curve
journal, January 1997

Nuclear Thermometers from Isotope Yield Ratios
journal, May 1997

Liquid–gas phase transition in nuclear matter
journal, September 1983

Quantum Nature of a Nuclear Phase Transition
journal, September 2008