DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Semiconducting Small Molecules as Active Materials for p-Type Accumulation Mode Organic Electrochemical Transistors

Abstract

A series of semiconducting small molecules with bithiophene or bis-3,4-ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with polar triethylene glycol side chains. Evidence of promising ion injection properties observed with cyclic voltammetry is complemented by strong electrochromism probed by spectroelectrochemistry. Blending these molecules with high molecular weight polyethylene oxide (PEO) is found to improve both ion injection and thin film stability. The molecules and their corresponding PEO blends are investigated as active layers in organic electrochemical transistors (OECTs). For the most promising molecule:polymer blend (P4E4:PEO), p-type accumulation mode OECTs with µA drain currents, μS peak transconductances, and a µC* figure-of-merit value of 0.81 F V-1 cm-1 s-1 are obtained.

Authors:
 [1];  [2];  [2];  [1];  [1];  [1];  [1];  [1];  [2]; ORCiD logo [1]
  1. Queen Mary Univ. of London (United Kingdom)
  2. Northwestern Univ., Evanston, IL (United States)
Publication Date:
Research Org.:
Argonne National Lab. (ANL), Argonne, IL (United States)
Sponsoring Org.:
National Science Foundation (NSF); USDOE
OSTI Identifier:
1701775
Resource Type:
Accepted Manuscript
Journal Name:
Advanced Electronic Materials
Additional Journal Information:
Journal Volume: 6; Journal Issue: 6; Journal ID: ISSN 2199-160X
Publisher:
Wiley
Country of Publication:
United States
Language:
ENGLISH
Subject:
36 MATERIALS SCIENCE

Citation Formats

Parr, Zachary S., Rashid, Reem B., Paulsen, Bryan D., Poggi, Benjamin, Tan, Ellasia, Freeley, Mark, Palma, Matteo, Abrahams, Isaac, Rivnay, Jonathan, and Nielsen, Christian B. Semiconducting Small Molecules as Active Materials for p-Type Accumulation Mode Organic Electrochemical Transistors. United States: N. p., 2020. Web. doi:10.1002/aelm.202000215.
Parr, Zachary S., Rashid, Reem B., Paulsen, Bryan D., Poggi, Benjamin, Tan, Ellasia, Freeley, Mark, Palma, Matteo, Abrahams, Isaac, Rivnay, Jonathan, & Nielsen, Christian B. Semiconducting Small Molecules as Active Materials for p-Type Accumulation Mode Organic Electrochemical Transistors. United States. https://doi.org/10.1002/aelm.202000215
Parr, Zachary S., Rashid, Reem B., Paulsen, Bryan D., Poggi, Benjamin, Tan, Ellasia, Freeley, Mark, Palma, Matteo, Abrahams, Isaac, Rivnay, Jonathan, and Nielsen, Christian B. Fri . "Semiconducting Small Molecules as Active Materials for p-Type Accumulation Mode Organic Electrochemical Transistors". United States. https://doi.org/10.1002/aelm.202000215. https://www.osti.gov/servlets/purl/1701775.
@article{osti_1701775,
title = {Semiconducting Small Molecules as Active Materials for p-Type Accumulation Mode Organic Electrochemical Transistors},
author = {Parr, Zachary S. and Rashid, Reem B. and Paulsen, Bryan D. and Poggi, Benjamin and Tan, Ellasia and Freeley, Mark and Palma, Matteo and Abrahams, Isaac and Rivnay, Jonathan and Nielsen, Christian B.},
abstractNote = {A series of semiconducting small molecules with bithiophene or bis-3,4-ethylenedioxythiophene cores are designed and synthesized. The molecules display stable reversible oxidation in solution and can be reversibly oxidized in the solid state with aqueous electrolyte when functionalized with polar triethylene glycol side chains. Evidence of promising ion injection properties observed with cyclic voltammetry is complemented by strong electrochromism probed by spectroelectrochemistry. Blending these molecules with high molecular weight polyethylene oxide (PEO) is found to improve both ion injection and thin film stability. The molecules and their corresponding PEO blends are investigated as active layers in organic electrochemical transistors (OECTs). For the most promising molecule:polymer blend (P4E4:PEO), p-type accumulation mode OECTs with µA drain currents, μS peak transconductances, and a µC* figure-of-merit value of 0.81 F V-1 cm-1 s-1 are obtained.},
doi = {10.1002/aelm.202000215},
journal = {Advanced Electronic Materials},
number = 6,
volume = 6,
place = {United States},
year = {Fri May 15 00:00:00 EDT 2020},
month = {Fri May 15 00:00:00 EDT 2020}
}

Works referenced in this record:

Easily Processable Phenylene−Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements
journal, August 2003

  • Mushrush, Melissa; Facchetti, Antonio; Lefenfeld, Michael
  • Journal of the American Chemical Society, Vol. 125, Issue 31
  • DOI: 10.1021/ja035143a

The organic electrochemical transistor for biological applications
journal, January 2015

  • Strakosas, Xenofon; Bongo, Manuelle; Owens, Róisín M.
  • Journal of Applied Polymer Science, Vol. 132, Issue 15
  • DOI: 10.1002/app.41735

Label free urea biosensor based on organic electrochemical transistors
journal, June 2018

  • Berto, Marcello; Diacci, Chiara; Theuer, Lorenz
  • Flexible and Printed Electronics, Vol. 3, Issue 2
  • DOI: 10.1088/2058-8585/aac8a8

Role of the Anion on the Transport and Structure of Organic Mixed Conductors
journal, December 2018

  • Cendra, Camila; Giovannitti, Alexander; Savva, Achilleas
  • Advanced Functional Materials, Vol. 29, Issue 5
  • DOI: 10.1002/adfm.201807034

A sensitivity-enhanced field-effect chiral sensor
journal, April 2008

  • Torsi, Luisa; Farinola, Gianluca M.; Marinelli, Francesco
  • Nature Materials, Vol. 7, Issue 5
  • DOI: 10.1038/nmat2167

Hydroxy-Terminated Organic Semiconductor-Based Field-Effect Transistors for Phosphonate Vapor Detection
journal, August 2007

  • Huang, Jia; Miragliotta, Joseph; Becknell, Alan
  • Journal of the American Chemical Society, Vol. 129, Issue 30
  • DOI: 10.1021/ja068964z

Multicomponent semiconducting polymer systems with low crystallization-induced percolation threshold
journal, November 2006

  • Goffri, Shalom; Müller, Christian; Stingelin-Stutzmann, Natalie
  • Nature Materials, Vol. 5, Issue 12
  • DOI: 10.1038/nmat1779

PEDOT:TOS with PEG: a biofunctional surface with improved electronic characteristics
journal, January 2012

  • Jimison, Leslie H.; Hama, Adel; Strakosas, Xenofon
  • Journal of Materials Chemistry, Vol. 22, Issue 37
  • DOI: 10.1039/c2jm32188b

Discrete Photopatternable π-Conjugated Oligomers for Electrochromic Devices
journal, July 2008

  • Nielsen, Christian B.; Angerhofer, Alex; Abboud, Khalil A.
  • Journal of the American Chemical Society, Vol. 130, Issue 30
  • DOI: 10.1021/ja7112273

N-type organic electrochemical transistors with stability in water
journal, October 2016

  • Giovannitti, Alexander; Nielsen, Christian B.; Sbircea, Dan-Tiberiu
  • Nature Communications, Vol. 7, Issue 1
  • DOI: 10.1038/ncomms13066

PEDOT: Dye-Based, Flexible Organic Electrochemical Transistor for Highly Sensitive pH Monitoring
journal, June 2018

  • Mariani, Federica; Gualandi, Isacco; Tessarolo, Marta
  • ACS Applied Materials & Interfaces, Vol. 10, Issue 26
  • DOI: 10.1021/acsami.8b04970

A glucose sensor via stable immobilization of the GOx enzyme on an organic transistor using a polymer brush
journal, September 2014

  • Welch, M. Elizabeth; Doublet, Thomas; Bernard, Christophe
  • Journal of Polymer Science Part A: Polymer Chemistry, Vol. 53, Issue 2
  • DOI: 10.1002/pola.27392

In Situ Antibody Detection and Charge Discrimination Using Aqueous Stable Pentacene Transistor Biosensors
journal, February 2011

  • Khan, Hadayat Ullah; Jang, Junhyuk; Kim, Jang-Joo
  • Journal of the American Chemical Society, Vol. 133, Issue 7
  • DOI: 10.1021/ja107088m

Glycolated Thiophene‐Tetrafluorophenylene Copolymers for Bioelectronic Applications: Synthesis by Direct Heteroarylation Polymerisation
journal, June 2019


Organic semiconductors for biological sensing
journal, January 2019

  • Borges-González, Jorge; Kousseff, Christina J.; Nielsen, Christian B.
  • Journal of Materials Chemistry C, Vol. 7, Issue 5
  • DOI: 10.1039/C8TC05900D

Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method
journal, January 2014

  • Yuan, Yongbo; Giri, Gaurav; Ayzner, Alexander L.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms4005

In vivo polymerization and manufacturing of wires and supercapacitors in plants
journal, February 2017

  • Stavrinidou, Eleni; Gabrielsson, Roger; Nilsson, K. Peter R.
  • Proceedings of the National Academy of Sciences, Vol. 114, Issue 11
  • DOI: 10.1073/pnas.1616456114

Effect of E Cigarette Emissions on Tracheal Cells Monitored at the Air–Liquid Interface Using an Organic Electrochemical Transistor
journal, December 2018

  • Ferro, Magali P.; Leclerc, Lara; Sleiman, Mohamad
  • Advanced Biosystems, Vol. 3, Issue 3
  • DOI: 10.1002/adbi.201800249

Wearable Fiber-Based Organic Electrochemical Transistors as a Platform for Highly Sensitive Dopamine Monitoring
journal, March 2019

  • Qing, Xing; Wang, Yuedan; Zhang, Yang
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 14
  • DOI: 10.1021/acsami.9b00115

Controlling Epileptiform Activity with Organic Electronic Ion Pumps
journal, April 2015

  • Williamson, Adam; Rivnay, Jonathan; Kergoat, Loïg
  • Advanced Materials, Vol. 27, Issue 20
  • DOI: 10.1002/adma.201500482

Controlling the mode of operation of organic transistors through side-chain engineering
journal, October 2016

  • Giovannitti, Alexander; Sbircea, Dan-Tiberiu; Inal, Sahika
  • Proceedings of the National Academy of Sciences, Vol. 113, Issue 43
  • DOI: 10.1073/pnas.1608780113

Organic Electrochemical Transistor Arrays for In Vitro Electrophysiology Monitoring of 2D and 3D Cardiac Tissues
journal, November 2018


Measurement of Barrier Tissue Integrity with an Organic Electrochemical Transistor
journal, September 2012

  • Jimison, Leslie H.; Tria, Scherrine A.; Khodagholy, Dion
  • Advanced Materials, Vol. 24, Issue 44
  • DOI: 10.1002/adma.201202612

Why are S–F and S–O non-covalent interactions stabilising?
journal, January 2018

  • Thorley, Karl J.; McCulloch, Iain
  • Journal of Materials Chemistry C, Vol. 6, Issue 45
  • DOI: 10.1039/C8TC04252G

Integration of a surface-directed microfluidic system with an organic electrochemical transistor array for multi-analyte biosensors
journal, January 2009

  • Yang, Sang Y.; DeFranco, John A.; Sylvester, Yuri A.
  • Lab Chip, Vol. 9, Issue 5
  • DOI: 10.1039/b811606g

Benchmarking organic mixed conductors for transistors
journal, November 2017


Balancing Ionic and Electronic Conduction for High‐Performance Organic Electrochemical Transistors
journal, January 2020

  • Savva, Achilleas; Hallani, Rawad; Cendra, Camila
  • Advanced Functional Materials, Vol. 30, Issue 11
  • DOI: 10.1002/adfm.201907657

Molecular Design of Semiconducting Polymers for High-Performance Organic Electrochemical Transistors
journal, August 2016

  • Nielsen, Christian B.; Giovannitti, Alexander; Sbircea, Dan-Tiberiu
  • Journal of the American Chemical Society, Vol. 138, Issue 32
  • DOI: 10.1021/jacs.6b05280

Electrochemistry of Conducting Polymers—Persistent Models and New Concepts
journal, August 2010

  • Heinze, Jürgen; Frontana-Uribe, Bernardo A.; Ludwigs, Sabine
  • Chemical Reviews, Vol. 110, Issue 8
  • DOI: 10.1021/cr900226k

Polymer Crystallinity Controls Water Uptake in Glycol Side-Chain Polymer Organic Electrochemical Transistors
journal, February 2019

  • Flagg, Lucas Q.; Bischak, Connor G.; Onorato, Jonathan W.
  • Journal of the American Chemical Society, Vol. 141, Issue 10
  • DOI: 10.1021/jacs.8b12640

Fullerene Active Layers for n-Type Organic Electrochemical Transistors
journal, July 2019

  • Bischak, Connor G.; Flagg, Lucas Q.; Yan, Kangrong
  • ACS Applied Materials & Interfaces, Vol. 11, Issue 31
  • DOI: 10.1021/acsami.9b11370

In vivo recordings of brain activity using organic transistors
journal, March 2013

  • Khodagholy, Dion; Doublet, Thomas; Quilichini, Pascale
  • Nature Communications, Vol. 4, Issue 1
  • DOI: 10.1038/ncomms2573