DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Similarity of capacitive radio-frequency discharges in nonlocal regimes

Abstract

Similarity transformations are essential for correlating discharges at different scales, which are mostly utilized with local field or local energy approximations. In this work, we report the fully kinetic results from particle-in-cell/Monte Carlo collision simulations that unambiguously demonstrate the similarity of radio frequency (rf) discharges in nonlocal regimes where the electron energy relaxation length is much larger than the gap dimension. It is found that at a constant rf voltage amplitude, discharges will be similar if the gas pressure, inverse of gap distance, and rf driving frequency are all changed by the same scaling factor. The scaling relations of fundamental parameters are illustrated for rf discharges in the alpha-mode with secondary electron emission ignored, and the temporal electron kinetics are shown to have invariance in similar discharges. The results explicitly validate the scaling laws in nonlocal kinetic regimes, indicating promising application potentials of the similarity transformations across a wide range of kinetic regimes.

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]; ORCiD logo [5]
  1. Michigan State Univ., East Lansing, MI (United States). Dept. of Computational Mathematics, Science and Engineering; Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
  2. Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering; Michigan State Univ., East Lansing, MI (United States). Fraunhofer Center for Coatings and Diamond Technologies
  3. Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering
  4. Michigan State Univ., East Lansing, MI (United States). Dept. of Electrical and Computer Engineering; Michigan State Univ., East Lansing, MI (United States). Fraunhofer Center for Coatings and Diamond Technologies; Michigan State Univ., East Lansing, MI (United States). Dept. of Chemical Engineering and Material Science
  5. Tsinghua Univ., Beijing (China). Dept. of Electrical Engineering
Publication Date:
Research Org.:
Univ. of Michigan, Ann Arbor, MI (United States)
Sponsoring Org.:
USDOE Office of Science (SC); US Air Force Office of Scientific Research (AFOSR); National Science Foundation (NSF); National Natural Science Foundation of China (NSFC)
OSTI Identifier:
1850769
Alternate Identifier(s):
OSTI ID: 1698046
Grant/Contract Number:  
SC0001939; FA9550-18-1-0062; FA9550-18-1-0061; 1917577; 1724941; 51777114
Resource Type:
Accepted Manuscript
Journal Name:
Physics of Plasmas
Additional Journal Information:
Journal Volume: 27; Journal Issue: 11; Journal ID: ISSN 1070-664X
Publisher:
American Institute of Physics (AIP)
Country of Publication:
United States
Language:
English
Subject:
71 CLASSICAL AND QUANTUM MECHANICS, GENERAL PHYSICS; Physics; electron energy distribution functions; gas discharges; radiofrequency discharges; stochastic processes; electron impact ionization; electrical properties and parameters; particle-in-cell method; plasma dynamics

Citation Formats

Fu, Yangyang, Zheng, Bocong, Zhang, Peng, Fan, Qi Hua, Verboncoeur, John P., and Wang, Xinxin. Similarity of capacitive radio-frequency discharges in nonlocal regimes. United States: N. p., 2020. Web. doi:10.1063/5.0022788.
Fu, Yangyang, Zheng, Bocong, Zhang, Peng, Fan, Qi Hua, Verboncoeur, John P., & Wang, Xinxin. Similarity of capacitive radio-frequency discharges in nonlocal regimes. United States. https://doi.org/10.1063/5.0022788
Fu, Yangyang, Zheng, Bocong, Zhang, Peng, Fan, Qi Hua, Verboncoeur, John P., and Wang, Xinxin. Mon . "Similarity of capacitive radio-frequency discharges in nonlocal regimes". United States. https://doi.org/10.1063/5.0022788. https://www.osti.gov/servlets/purl/1850769.
@article{osti_1850769,
title = {Similarity of capacitive radio-frequency discharges in nonlocal regimes},
author = {Fu, Yangyang and Zheng, Bocong and Zhang, Peng and Fan, Qi Hua and Verboncoeur, John P. and Wang, Xinxin},
abstractNote = {Similarity transformations are essential for correlating discharges at different scales, which are mostly utilized with local field or local energy approximations. In this work, we report the fully kinetic results from particle-in-cell/Monte Carlo collision simulations that unambiguously demonstrate the similarity of radio frequency (rf) discharges in nonlocal regimes where the electron energy relaxation length is much larger than the gap dimension. It is found that at a constant rf voltage amplitude, discharges will be similar if the gas pressure, inverse of gap distance, and rf driving frequency are all changed by the same scaling factor. The scaling relations of fundamental parameters are illustrated for rf discharges in the alpha-mode with secondary electron emission ignored, and the temporal electron kinetics are shown to have invariance in similar discharges. The results explicitly validate the scaling laws in nonlocal kinetic regimes, indicating promising application potentials of the similarity transformations across a wide range of kinetic regimes.},
doi = {10.1063/5.0022788},
journal = {Physics of Plasmas},
number = 11,
volume = 27,
place = {United States},
year = {Mon Nov 02 00:00:00 EST 2020},
month = {Mon Nov 02 00:00:00 EST 2020}
}

Works referenced in this record:

Capacitively coupled glow discharges at frequencies above 13.56 MHz
journal, October 1991

  • Surendra, M.; Graves, D. B.
  • Applied Physics Letters, Vol. 59, Issue 17
  • DOI: 10.1063/1.106112

A Physicist's Perspective on “Views on Macroscopic Kinetics of Plasma Polymerisation”
journal, May 2010

  • von Keudell, Achim; Benedikt, Jan
  • Plasma Processes and Polymers, Vol. 7, Issue 5
  • DOI: 10.1002/ppap.201000011

Simulation benchmarks for low-pressure plasmas: Capacitive discharges
journal, January 2013

  • Turner, M. M.; Derzsi, A.; Donkó, Z.
  • Physics of Plasmas, Vol. 20, Issue 1
  • DOI: 10.1063/1.4775084

Self-consistent model of a direct-current glow discharge: Treatment of fast electrons
journal, January 1990


Scaling laws verification for capacitive rf‐discharge Ar plasma using particle‐in‐cell simulations
journal, December 1995

  • Chung, T. H.; Yoon, H. S.; Lee, J. K.
  • Journal of Applied Physics, Vol. 78, Issue 11
  • DOI: 10.1063/1.360527

Theory of High Frequency Gas Discharges. IV. Note on the Similarity Principle
journal, February 1948


On the Similarities of Low-Temperature Plasma Discharges
journal, May 2019

  • Fu, Yangyang; Verboncoeur, John P.
  • IEEE Transactions on Plasma Science, Vol. 47, Issue 5
  • DOI: 10.1109/TPS.2018.2886444

Simultaneous Potential and Circuit Solution for 1D Bounded Plasma Particle Simulation Codes
journal, February 1993

  • Verboncoeur, J. P.; Alves, M. V.; Vahedi, V.
  • Journal of Computational Physics, Vol. 104, Issue 2
  • DOI: 10.1006/jcph.1993.1034

Modelling of tokamak glow discharge cleaning II: comparison with experiment and application to ITER
journal, December 2014


Measurement of electron energy distribution in low-pressure RF discharges
journal, March 1992

  • Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
  • Plasma Sources Science and Technology, Vol. 1, Issue 1
  • DOI: 10.1088/0963-0252/1/1/006

Electron kinetics in non-uniform glow discharge plasmas
journal, May 1995


Solving the Boltzmann equation to obtain electron transport coefficients and rate coefficients for fluid models
journal, October 2005


Modes and the alpha-gamma transition in rf capacitive discharges in N2O at different rf frequencies
journal, October 2006

  • Lisovskiy, V.; Booth, J. -P.; Landry, K.
  • Physics of Plasmas, Vol. 13, Issue 10
  • DOI: 10.1063/1.2364135

Secondary electrons in rf and dc/rf capacitive discharges
journal, August 2008


Gas Discharge Physics
book, January 1991


Plasma ionization through wave-particle interaction in a capacitively coupled radio-frequency discharge
journal, March 2007

  • O’Connell, D.; Gans, T.; Vender, D.
  • Physics of Plasmas, Vol. 14, Issue 3
  • DOI: 10.1063/1.2717889

Positive streamers in air and nitrogen of varying density: experiments on similarity laws
journal, November 2008


Ion energy distribution control in single and dual frequency capacitive plasma sources
journal, January 2005

  • Lee, J. K.; Manuilenko, O. V.; Babaeva, N. Yu
  • Plasma Sources Science and Technology, Vol. 14, Issue 1
  • DOI: 10.1088/0963-0252/14/1/012

The Model of Macroscopic Kinetics in Non-Equilibrium Plasma Chemical Reactions I. General Considerations and Basic Relations
journal, January 1985


High-energy ballistic electrons in low-pressure radio-frequency plasmas
journal, September 2020

  • Fu, Yangyang; Zheng, Bocong; Wen, De-Qi
  • Plasma Sources Science and Technology, Vol. 29, Issue 9
  • DOI: 10.1088/1361-6595/abb21b

SIMILARITY LAWS FOR THE EFFECTS OF PRESSURE AND DISCHARGE DIAMETER ON GAIN OF He–Ne LASERS
journal, December 1963

  • Gordon, E. I.; White, A. D.
  • Applied Physics Letters, Vol. 3, Issue 11
  • DOI: 10.1063/1.1753847

Abnormal Heating of Low-Energy Electrons in Low-Pressure Capacitively Coupled Discharges
journal, February 2007


Scaling laws for high‐density plasmas
journal, January 1974


Verification of frequency scaling laws for capacitive radio‐frequency discharges using two‐dimensional simulations*
journal, July 1993

  • Vahedi, V.; Birdsall, C. K.; Lieberman, M. A.
  • Physics of Fluids B: Plasma Physics, Vol. 5, Issue 7
  • DOI: 10.1063/1.860711

Kinetic interpretation of resonance phenomena in low pressure capacitively coupled radio frequency plasmas
journal, June 2016

  • Wilczek, Sebastian; Trieschmann, Jan; Eremin, Denis
  • Physics of Plasmas, Vol. 23, Issue 6
  • DOI: 10.1063/1.4953432

Magnetohydrodynamic scaling: From astrophysics to the laboratory
journal, May 2001

  • Ryutov, D. D.; Remington, B. A.; Robey, H. F.
  • Physics of Plasmas, Vol. 8, Issue 5
  • DOI: 10.1063/1.1344562

Reply to: “Testing the Hypothesis: Comments on Plasma Polymerization of Acrylic Acid Revisited”
journal, May 2010

  • Hegemann, Dirk; Körner, Enrico; Guimond, Sébastien
  • Plasma Processes and Polymers, Vol. 7, Issue 5
  • DOI: 10.1002/ppap.200900170

Scaling laws for dynamical plasma phenomena
journal, October 2018


Stochastic electron heating in bounded radio‐frequency plasmas
journal, December 1996

  • Kaganovich, I. D.; Kolobov, V. I.; Tsendin, L. D.
  • Applied Physics Letters, Vol. 69, Issue 25
  • DOI: 10.1063/1.117115

Cathode fall thickness of abnormal glow discharges between parallel-plane electrodes in different radii at low pressure
journal, February 2015

  • Fu, Yangyang; Luo, Haiyun; Zou, Xiaobing
  • Physics of Plasmas, Vol. 22, Issue 2
  • DOI: 10.1063/1.4907660

Critical evaluation of conditions of plasma polymerization
journal, April 1978

  • Yasuda, H.; Hirotsu, Toshihiro
  • Journal of Polymer Science: Polymer Chemistry Edition, Vol. 16, Issue 4
  • DOI: 10.1002/pol.1978.170160403

Electrical breakdown from macro to micro/nano scales: a tutorial and a review of the state of the art
journal, February 2020

  • Fu, Yangyang; Zhang, Peng; Verboncoeur, John P.
  • Plasma Research Express, Vol. 2, Issue 1
  • DOI: 10.1088/2516-1067/ab6c84

Nonlinear series resonance and standing waves in dual-frequency capacitive discharges
journal, November 2016


Gas breakdown and its scaling law in microgaps with multiple concentric cathode protrusions
journal, January 2019

  • Fu, Yangyang; Zhang, Peng; Krek, Janez
  • Applied Physics Letters, Vol. 114, Issue 1
  • DOI: 10.1063/1.5077015

Heating of a dual frequency capacitively coupled plasma via the plasma series resonance
journal, October 2007

  • Semmler, E.; Awakowicz, P.; von Keudell, A.
  • Plasma Sources Science and Technology, Vol. 16, Issue 4
  • DOI: 10.1088/0963-0252/16/4/020

Study of scaling law for particle-in-cell/Monte Carlo simulation of low-temperature magnetized plasma for electric propulsion
journal, August 2019

  • Li, Jian; Wu, Jianjun; Zhang, Yu
  • Journal of Physics D: Applied Physics, Vol. 52, Issue 45
  • DOI: 10.1088/1361-6463/ab394b

Scaling laws and nonlinear wave dynamics in neon glow discharges
journal, March 2005

  • Wilke, C.; Koch, B. -P.; Bruhn, B.
  • Physics of Plasmas, Vol. 12, Issue 3
  • DOI: 10.1063/1.1853384

Probe diagnostics of non‐Maxwellian plasmas
journal, April 1993

  • Godyak, V. A.; Piejak, R. B.; Alexandrovich, B. M.
  • Journal of Applied Physics, Vol. 73, Issue 8
  • DOI: 10.1063/1.352924

High selectivity plasma etching of silicon dioxide with a dual frequency 27/2 MHz capacitive radio frequency discharge
journal, September 1996

  • Tsai, W.
  • Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, Vol. 14, Issue 5
  • DOI: 10.1116/1.588820

Using field emission to control the electron energy distribution in high-pressure microdischarges at microscale dimensions
journal, December 2013

  • Li, Yingjie; Go, David B.
  • Applied Physics Letters, Vol. 103, Issue 23
  • DOI: 10.1063/1.4841495

Self-consistent nonlinear transmission line model of standing wave effects in a capacitive discharge
journal, May 2004

  • Chabert, P.; Raimbault, J. L.; Rax, J. M.
  • Physics of Plasmas, Vol. 11, Issue 5
  • DOI: 10.1063/1.1688334

Scaling laws for gas breakdown for nanoscale to microscale gaps at atmospheric pressure
journal, June 2016

  • Loveless, Amanda M.; Garner, Allen L.
  • Applied Physics Letters, Vol. 108, Issue 23
  • DOI: 10.1063/1.4953202

Principles of Plasma Discharges and Materials Processing
book, January 2005


On electron heating in a low pressure capacitively coupled oxygen discharge
journal, November 2017

  • Gudmundsson, J. T.; Snorrason, D. I.
  • Journal of Applied Physics, Vol. 122, Issue 19
  • DOI: 10.1063/1.5003971

Transition between different regimes of rf glow discharges
journal, April 1990


Similarity law for rf breakdown
journal, March 2008


Standing wave and skin effects in large-area, high-frequency capacitive discharges
journal, June 2002

  • Lieberman, M. A.; Booth, J. P.; Chabert, P.
  • Plasma Sources Science and Technology, Vol. 11, Issue 3
  • DOI: 10.1088/0963-0252/11/3/310

Effects of interelectrode gap on high frequency and very high frequency capacitively coupled plasmas
journal, July 2009

  • Bera, Kallol; Rauf, Shahid; Ramaswamy, Kartik
  • Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, Vol. 27, Issue 4
  • DOI: 10.1116/1.3151821

Extended scaling and Paschen law for micro-sized radiofrequency plasma breakdown
journal, February 2017

  • Lee, Min Uk; Lee, Jimo; Lee, Jae Koo
  • Plasma Sources Science and Technology, Vol. 26, Issue 3
  • DOI: 10.1088/1361-6595/aa52a8

Investigation on the effect of nonlinear processes on similarity law in high-pressure argon discharges
journal, November 2017

  • Fu, Yangyang; Parsey, Guy M.; Verboncoeur, John P.
  • Physics of Plasmas, Vol. 24, Issue 11
  • DOI: 10.1063/1.5005112

Electron Kinetics in Radio-Frequency Atmospheric-Pressure Microplasmas
journal, August 2007


Application of similarity laws as a light source diagnostics
journal, May 2010


Plasma Polymerization of Acrylic Acid Revisited
journal, April 2009

  • Hegemann, Dirk; Körner, Enrico; Guimond, Sébastien
  • Plasma Processes and Polymers, Vol. 6, Issue 4
  • DOI: 10.1002/ppap.200800089

Scaling and the design of miniaturized chemical-analysis systems
journal, July 2006

  • Janasek, Dirk; Franzke, Joachim; Manz, Andreas
  • Nature, Vol. 442, Issue 7101
  • DOI: 10.1038/nature05059

Scaling laws for AC gas breakdown and implications for universality
journal, October 2017

  • Loveless, Amanda M.; Garner, Allen L.
  • Physics of Plasmas, Vol. 24, Issue 10
  • DOI: 10.1063/1.4998245

Abnormally low electron energy and heating-mode transition in a low-pressure argon rf discharge at 13.56 MHz
journal, August 1990


Effects of photoionization on similarity properties of streamers at various pressures in air
journal, January 2006


Views on Macroscopic Kinetics of Plasma Polymerisation
journal, April 2010

  • d'Agostino, Riccardo; Favia, Pietro; Förch, Renate
  • Plasma Processes and Polymers, Vol. 7, Issue 5
  • DOI: 10.1002/ppap.201000040

Transition of low-temperature plasma similarity laws from low to high ionization degree regimes
journal, September 2019

  • Fu, Yangyang; Krek, Janez; Wen, Deqi
  • Plasma Sources Science and Technology, Vol. 28, Issue 9
  • DOI: 10.1088/1361-6595/ab3c82

Paschen's curve in microgaps with an electrode surface protrusion
journal, July 2018

  • Fu, Yangyang; Zhang, Peng; Verboncoeur, John P.
  • Applied Physics Letters, Vol. 113, Issue 5
  • DOI: 10.1063/1.5045182

Enhancement of Ohmic heating by Hall current in magnetized capacitively coupled discharges
journal, September 2019

  • Zheng, Bocong; Wang, Keliang; Grotjohn, Timothy
  • Plasma Sources Science and Technology, Vol. 28, Issue 9
  • DOI: 10.1088/1361-6595/ab419d

Similarity relations for low-temperature nonisothermal discharges
journal, September 1991


Modification of the Coulomb Logarithm due to Electron-Neutral Collisions
journal, July 2019


<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-01-01">January 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Mesyats, Gennadii A.</span> </li> <li> Physics-Uspekhi, Vol. 49, Issue 10</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1070/PU2006v049n10ABEH006118" class="text-muted" target="_blank" rel="noopener noreferrer">10.1070/PU2006v049n10ABEH006118<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1109/27.467971" target="_blank" rel="noopener noreferrer" class="name">Nonlocal electron kinetics in collisional gas discharge plasmas<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1995-01-01">January 1995</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kolobov, V. I.; Godyak, V. A.</span> </li> <li> IEEE Transactions on Plasma Science, Vol. 23, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1109/27.467971" class="text-muted" target="_blank" rel="noopener noreferrer">10.1109/27.467971<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1103/PhysRevLett.122.185002" target="_blank" rel="noopener noreferrer" class="name">Observation of Nonlinear Standing Waves Excited by Plasma-Series-Resonance-Enhanced Harmonics in Capacitive Discharges<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2019-05-01">May 2019</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Zhao, Kai; Wen, De-Qi; Liu, Yong-Xin</span> </li> <li> Physical Review Letters, Vol. 122, Issue 18</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1103/PhysRevLett.122.185002" class="text-muted" target="_blank" rel="noopener noreferrer">10.1103/PhysRevLett.122.185002<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0375-9601(88)90846-8" target="_blank" rel="noopener noreferrer" class="name">Similarity rules for low-pressure gas discharges in a metal + rare gas mixture<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1988-01-01">January 1988</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Kalanov, V. P.; Milenin, V. M.; Panasjuk, G. Ju.</span> </li> <li> Physics Letters A, Vol. 126, Issue 5-6</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0375-9601(88)90846-8" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0375-9601(88)90846-8<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.3367/UFNe.0180.201002b.0139" target="_blank" rel="noopener noreferrer" class="name">Nonlocal electron kinetics in gas-discharge plasma<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2010-05-11">May 2010</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Tsendin, Lev D.</span> </li> <li> Physics-Uspekhi, Vol. 53, Issue 2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.3367/UFNe.0180.201002b.0139" class="text-muted" target="_blank" rel="noopener noreferrer">10.3367/UFNe.0180.201002b.0139<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/1361-6595/aacc0c" target="_blank" rel="noopener noreferrer" class="name">Monte Carlo modeling of radio-frequency breakdown in argon<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2018-07-01">July 2018</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Puač, Marija; Marić, Dragana; Radmilović-Radjenović, Marija</span> </li> <li> Plasma Sources Science and Technology, Vol. 27, Issue 7</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/1361-6595/aacc0c" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/1361-6595/aacc0c<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1016/0010-4655(94)00171-W" target="_blank" rel="noopener noreferrer" class="name">A Monte Carlo collision model for the particle-in-cell method: applications to argon and oxygen discharges<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1995-05-01">May 1995</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Vahedi, V.; Surendra, M.</span> </li> <li> Computer Physics Communications, Vol. 87, Issue 1-2</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1016/0010-4655(94)00171-W" class="text-muted" target="_blank" rel="noopener noreferrer">10.1016/0010-4655(94)00171-W<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1259/jrs.1915.0049" target="_blank" rel="noopener noreferrer" class="name">Electricity in Gases<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="1915-07-01">July 1915</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Townsend, J. S.</span> </li> <li> Journal of the Röntgen Society, Vol. 11, Issue 44</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1259/jrs.1915.0049" class="text-muted" target="_blank" rel="noopener noreferrer">10.1259/jrs.1915.0049<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> <div> <h2 class="title" style="margin-bottom:0;" data-apporder=""> <a href="https://doi.org/10.1088/0963-0252/15/4/015" target="_blank" rel="noopener noreferrer" class="name">The validity of the general similarity law for electrical breakdown of gases<span class="fa fa-external-link" aria-hidden="true"></span></a> <small class="text-muted" style="text-transform:uppercase; font-size:0.75rem;"><br/> <span class="type">journal</span>, <span class="date" data-date="2006-08-18">August 2006</span></small> </h2> <ul class="small references-list" style="list-style-type:none; margin-top: 0.5em; padding-left: 0; line-height:1.8em;"> <li> <span style="color:#5C7B2D;"> Osmokrović, Predrag; Živić, Tamara; Lončar, Boris</span> </li> <li> Plasma Sources Science and Technology, Vol. 15, Issue 4</li> <li> <span class="text-muted related-url">DOI: <a href="https://doi.org/10.1088/0963-0252/15/4/015" class="text-muted" target="_blank" rel="noopener noreferrer">10.1088/0963-0252/15/4/015<span class="fa fa-external-link" aria-hidden="true"></span></a></span> </li> </ul> <hr/> </div> </div> <div class="pagination-container small"> <a class="pure-button prev page" href="#" rel="prev"><span class="sr-only">Previous Page</span><span class="fa fa-angle-left"></span></a> <ul class="pagination d-inline-block" style="padding-left:.2em;"></ul> <a class="pure-button next page" href="#" rel="next"><span class="sr-only">Next Page</span><span class="fa fa-angle-right"></span></a> </div> </div> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="*"><span class="fa fa-angle-right"></span> All References</a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="book"><span class="fa fa-angle-right"></span> book<small class="text-muted"> (2)</small></a></li> <li class="small" style="margin-left:.75em; text-transform:capitalize;"><a href="" class="reference-type-filter tab-nav" data-tab="biblio-references" data-filter="type" data-pattern="journal"><span class="fa fa-angle-right"></span> journal<small class="text-muted"> (72)</small></a></li> </ul> <div style="margin-top:2em;"> <form class="pure-form small text-muted reference-search"> <label for="reference-search-text" class="sr-only">Search</label> <input class="search form-control pure-input-1" id="reference-search-text" placeholder="Search" style="margin-bottom:10px;" /> <fieldset aria-label="Sort By"> <legend class="legend-filters sr-only">Sort by:</legend> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="name" style="position:relative;top:2px;" id="reference-search-sort-name"><label for="reference-search-sort-name" style="margin-left: .3em;">Sort by title</label></div> <div style="margin-left:1em; font-weight:normal; line-height: 1.6em;"><input type="radio" class="sort" name="references-sort" data-sort="date" data-order="desc" style="position:relative;top:2px;" id="reference-search-sort-date"><label for="reference-search-sort-date" style="margin-left: .3em;">Sort by date</label></div> </fieldset> <div class="text-left" style="margin-left:1em;"> <a href="" class="filter-clear clearfix" title="Clear filter / sort" style="font-weight:normal; float:none;">[ × clear filter / sort ]</a> </div> <input type="submit" id="sort_submit_references" name="submit" aria-label="submit" style="display: none;"/> </form> </div> </div> </div> </section> <section id="biblio-related" class="tab-content tab-content-sec " data-tab="biblio"> <div class="row"> <div class="col-sm-9 order-sm-9"> <section id="biblio-similar" class="tab-content tab-content-sec active" data-tab="related"> <div class="padding"> <p class="lead text-muted" style="font-size: 18px; margin-top:0px;">Similar Records in DOE PAGES and OSTI.GOV collections:</p> <aside> <ul class="item-list" itemscope itemtype="http://schema.org/ItemList" style="padding-left:0; list-style-type: none;"> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="0" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1850771-similarity-law-frequency-scaling-low-pressure-capacitive-radio-frequency-plasmas" itemprop="url">Similarity law and frequency scaling in low-pressure capacitive radio frequency plasmas</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Zheng, Bocong</span> ; <span class="author">Wen, De-Qi</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Applied Physics Letters</span> </span> </div> <div class="abstract">We verify the similarity law (SL) and show a violation of frequency scaling (f-scaling) in low-pressure capacitive radio frequency (rf) plasmas via fully kinetic particle-in-cell simulations. The SL scaling relations for electron density and electron power absorption are first confirmed in similar rf discharges. Based on these results, with only the driving frequency varied, the f-scaling for electron density is also validated, showing almost the same trend as the SL scaling, across most of the frequency regime. However, violations of the f-scaling are observed at lower frequencies, which are found to be relevant to the electron heating mode transition from<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> stochastic to Ohmic heating. Electron kinetic invariance is illustrated for the SL and f-scaling being valid, respectively, whereas the electron kinetic variation is observed when the f-scaling is violated.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/5.0029518" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1850771" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1063/5.0029518</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1850771" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1850771" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="1" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1979636-generalizing-similarity-laws-radio-frequency-discharge-plasmas-across-nonlinear-transition-regimes" itemprop="url">Generalizing Similarity Laws for Radio-Frequency Discharge Plasmas across Nonlinear Transition Regimes</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Wang, Huihui</span> ; <span class="author">Zheng, Bocong</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physical Review Applied</span> </span> </div> <div class="abstract">We generalize similarity theory based on the scaling and solution invariance of the Boltzmann equation, coupled with the Poisson equation, and demonstrate similarity laws for radio-frequency (rf) discharge plasmas across three nonlinear transitional regimes, namely, the alpha-gamma mode transition, the stochastic-Ohmic-heating mode transition, and the bounce-resonance-heating mode transition. Fundamental plasma parameters, e.g., the electron power absorption, under similar discharge conditions are examined via fully kinetic particle-in-cell simulations, and electron-kinetic invariance is exemplified in similar rf discharge plasmas. The results unambiguously confirm the applicability of similarity laws for rf plasmas in extended operating regimes, and strengthen the foundations and framework of<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> similarity physics with universality.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1103/physrevapplied.16.054016" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1979636" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1103/physrevapplied.16.054016</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1979636" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1979636" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="3" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1850774-direct-current-microplasma-formation-around-microstructure-arrays" itemprop="url">Direct current microplasma formation around microstructure arrays</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Wang, Huihui</span> ; <span class="author">Zheng, Bocong</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Applied Physics Letters</span> </span> </div> <div class="abstract">We demonstrate the formation and transition behaviors of a microplasma around microstructure arrays at different gas pressures via two-dimensional particle-in-cell/Monte Carlo collision simulations. It is found that the microdischarge occurs outside the cathode microcavities at the lowest pressure and starts penetrating the microcavities with a curved sheath edge as the pressure increases. At higher pressure, coupled periodic microhollow cathode discharges (MHCDs) are formed inside the microcavities. Further increasing the gas pressure results in the disappearance of the MHCDs, and the dominant discharge shifts outside of the microcavity, locating above the protrusion tips. The effect of the space charge shielding on<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> the discharge and the conditions for MHCD formation are discussed. The macroscopic discharge parameter scalings with the gas pressure and the electron kinetics are also examined. The results are helpful for deeply understanding the microplasma formation with nonplanar electrodes, which inform the scaling, design, and optimization of microplasma array devices across a wide range of pressure regimes in practical applications.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/5.0046312" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1850774" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1063/5.0046312</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1850774" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1850774" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="4" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1850773-transition-characteristics-electron-kinetics-microhollow-cathode-discharges" itemprop="url">Transition characteristics and electron kinetics in microhollow cathode discharges</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Fu, Yangyang</span> ; <span class="author">Zheng, Bocong</span> ; <span class="author">Zhang, Peng</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Journal of Applied Physics</span> </span> </div> <div class="abstract">We demonstrate the transition characteristics and electron kinetics of microdischarges in a microgap with a cathode having microstructures using two-dimensional particle-in-cell/Monte Carlo collision (2d3v) simulations. It is found that the microdischarge is inside the hollow cavity at lower pressures, forming microhollow cathode discharges (MHCDs), while the dominant discharge moves outside the cavity at higher pressures, locating above the cathode rectangular protrusion tip. The spatial distributions of the microdischarge parameters (e.g., electric potential and electron density) are presented by capturing the transition characteristics. The electron kinetics of the microdischarges are examined based on the moment analysis of the electron Boltzmann equation.<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> The collisional and non-collisional components of the electron power absorption are decomposed, which were seldomly investigated for microdischarges previously. The results provide fundamental insights into MHCD formation with a structured electrode at varying pressure conditions, which could be beneficial for the design and fabrication of microplasma devices in practical applications.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/5.0033282" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1850773" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1063/5.0033282</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1850773" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1850773" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> <li> <div class="article item document" itemprop="itemListElement" itemscope itemtype="http://schema.org/WebPage"><meta itemprop="position" content="5" /><div class="item-info"> <h2 class="title" itemprop="name headline"><a href="/pages/biblio/1850770-comparison-particle-cell-simulations-dc-magnetron-sputtering-discharges" itemprop="url">Comparison of 1D and 2D particle-in-cell simulations for DC magnetron sputtering discharges</a></h2> <div class="metadata"> <small class="text-muted" style="text-transform:uppercase;display:block;line-height:2.5em;">Journal Article</small><span class="authors"> <span class="author">Zheng, Bocong</span> ; <span class="author">Fu, Yangyang</span> ; <span class="author">Wang, Keliang</span> ; <span class="author">...</span> <span class="text-muted pubdata"> - Physics of Plasmas</span> </span> </div> <div class="abstract">One-dimensional and two-dimensional particle-in-cell (PIC)/Monte Carlo collision simulations are performed for a balanced direct current magnetron sputtering (DCMS) discharge. The plasma parameters obtained by both simulations above the target racetrack share similar features and magnitudes under similar discharge intensities, i.e., similar local discharge current densities. The commonly observed high-energy tail of electron energy distribution in DCMS discharges is reproduced in both simulations. Additionally, the accuracy and applicability of using onedimensional simulations to qualitatively investigate the characteristics of balanced DCMS discharge are confirmed. In terms of capturing the key physical mechanisms in DCMS, one-dimensional PIC simulation is an efficient method, which<a href='#' onclick='$(this).hide().next().show().next().show();return false;' style='margin-left:10px;'>more »</a><span style='display:none;'> could largely alleviate the computational expense and preserve the physical fidelity of modeling results.</span><a href='#' onclick='$(this).hide().prev().hide().prev().show();return false;' style='margin-left:10px;display:none;'>« less</a></div><div class="metadata-links small clearfix text-muted" style="margin-top:15px;"> <div class="pure-menu pure-menu-horizontal pull-right" style="width:unset;"> <ul class="pure-menu-list"> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc doi-link " href="https://doi.org/10.1063/5.0029353" target="_blank" rel="noopener" title="Link to document DOI" data-ostiid="1850770" data-product-type="Journal Article" data-product-subtype="AM" >https://doi.org/10.1063/5.0029353</a></span></li> <li class="pure-menu-item"><span class="item-info-ftlink"><a class="misc fulltext-link " href="/pages/servlets/purl/1850770" title="Link to document media" target="_blank" rel="noopener" data-ostiid="1850770" data-product-type="Journal Article" data-product-subtype="AM" >Full Text Available</a></span></li> </ul> </div> </div> </div> <div class="clearfix"></div> </div> </li> </ul> </aside> </div> </section> </div> <div class="col-sm-3 order-sm-3"> <ul class="nav nav-stacked"> <li class="active"><a class="tab-nav disabled" data-tab="related" style="color: #636c72 !important; opacity: 1;"><span class="fa fa-angle-right"></span> Similar Records</a></li> </ul> </div> </div> </section> </div></div> </div> </div> </section> <footer class="" style="background-color:#f9f9f9;"> <div class="footer-minor"> <div class="container"> <hr class="footer-separator"/> <br/> <div class="col text-center mt-3"> <div class="pure-menu pure-menu-horizontal"> <ul class="pure-menu-list" id="footer-org-menu"> <li class="pure-menu-item"> <a href="https://energy.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-us-doe-min" alt="U.S. Department of Energy" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.energy.gov/science/office-science" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-office-of-science-min" alt="Office of Science" /> </a> </li> <li class="pure-menu-item"> <a href="https://www.osti.gov" target="_blank" rel="noopener noreferrer"> <img src="" class="sprite sprite-footer-osti-min" alt="Office of Scientific and Technical Information" /> </a> </li> </ul> </div> </div> <div class="col text-center small" style="margin-top: 0.5em;margin-bottom:2.0rem;"> <div class="row justify-content-center" style="color:white"> <div class="pure-menu pure-menu-horizontal" style='white-space:normal'> <ul class="pure-menu-list"> <li class="pure-menu-item"><a href="https://www.osti.gov/disclaim" class="pure-menu-link" target="_blank" ref="noopener noreferrer"><span class="fa fa-institution"></span> Website Policies <span class="d-none d-sm-inline d-print-none" style="color:#737373;">/ Important Links</span></a></li> <li class="pure-menu-item" style='float:none;'><a href="/pages/contact" class="pure-menu-link"><span class="fa fa-comments-o"></span>Contact Us</a></li> <li class="d-block d-md-none mb-1"></li> <li class="pure-menu-item" style='float:none;'><a target="_blank" title="Vulnerability Disclosure Program" class="pure-menu-link" href="https://doe.responsibledisclosure.com/hc/en-us" rel="noopener noreferrer">Vulnerability Disclosure Program</a></li> <li class="d-block d-lg-none mb-1"></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.facebook.com/ostigov" target="_blank" class="pure-menu-link social ext fa fa-facebook" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Facebook</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://twitter.com/OSTIgov" target="_blank" class="pure-menu-link social ext fa fa-twitter" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Twitter</span></a></li> <li class="pure-menu-item" style="float:none;"><a href="https://www.youtube.com/user/ostigov" target="_blank" class="pure-menu-link social ext fa fa-youtube-play" rel="noopener noreferrer"><span class="sr-only" style="background-color: #fff; color: #333;">Youtube</span></a></li> </ul> </div> </div> </div> </div> </div> </footer> <link href="/pages/css/pages.fonts.240327.0205.css" rel="stylesheet"> <script src="/pages/js/pages.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/pages.biblio.240327.0205.js"></script><noscript></noscript> <script defer src="/pages/js/lity.js"></script><noscript></noscript> <script async type="text/javascript" src="/pages/js/Universal-Federated-Analytics-Min.js?agency=DOE" id="_fed_an_ua_tag"></script><noscript></noscript> </body> <!-- DOE PAGES v.240327.0205 --> </html>