DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Chirality density wave of the "hidden order" phase in URu2Si2

Abstract

A second-order phase transition in a physical system is associated with the emergence of an “order parameter” and a spontaneous symmetry breaking. The heavy fermion superconductor URu2Si2 has a “hidden order” (HO) phase below the temperature of 17.5 kelvin; the symmetry of the associated order parameter has remained ambiguous. In this study, we use polarization-resolved Raman spectroscopy to specify the symmetry of the low-energy excitations above and below the HO transition. We determine that the HO parameter breaks local vertical and diagonal reflection symmetries at the uranium sites, resulting in crystal field states with distinct chiral properties, which order to a commensurate chirality density wave ground state.

Authors:
ORCiD logo [1];  [2];  [1];  [2];  [2];  [2];  [3];  [2]
  1. Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
  2. Rutgers Univ., Piscataway, NJ (United States)
  3. Leiden Univ. (Netherlands). Kamerlingh Onnes Lab.
Publication Date:
Research Org.:
Los Alamos National Lab. (LANL), Los Alamos, NM (United States)
Sponsoring Org.:
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division; National Science Foundation (NSF)
OSTI Identifier:
1680010
Report Number(s):
LA-UR-15-27086
Journal ID: ISSN 0036-8075
Grant/Contract Number:  
89233218CNA000001; SC0005463; DMR-1104884; DMR-0844115
Resource Type:
Accepted Manuscript
Journal Name:
Science
Additional Journal Information:
Journal Volume: 347; Journal Issue: 6228; Journal ID: ISSN 0036-8075
Publisher:
AAAS
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Bauer, Eric Dietzgen, Kung, H.-H., Baumbach, R. E., Thorsmolle, V. K., Zhang, W.-L., Haule, K., Mydosh, J. A., and Blumberg, G. Chirality density wave of the "hidden order" phase in URu2Si2. United States: N. p., 2015. Web. doi:10.1126/science.1259729.
Bauer, Eric Dietzgen, Kung, H.-H., Baumbach, R. E., Thorsmolle, V. K., Zhang, W.-L., Haule, K., Mydosh, J. A., & Blumberg, G. Chirality density wave of the "hidden order" phase in URu2Si2. United States. https://doi.org/10.1126/science.1259729
Bauer, Eric Dietzgen, Kung, H.-H., Baumbach, R. E., Thorsmolle, V. K., Zhang, W.-L., Haule, K., Mydosh, J. A., and Blumberg, G. Fri . "Chirality density wave of the "hidden order" phase in URu2Si2". United States. https://doi.org/10.1126/science.1259729. https://www.osti.gov/servlets/purl/1680010.
@article{osti_1680010,
title = {Chirality density wave of the "hidden order" phase in URu2Si2},
author = {Bauer, Eric Dietzgen and Kung, H.-H. and Baumbach, R. E. and Thorsmolle, V. K. and Zhang, W.-L. and Haule, K. and Mydosh, J. A. and Blumberg, G.},
abstractNote = {A second-order phase transition in a physical system is associated with the emergence of an “order parameter” and a spontaneous symmetry breaking. The heavy fermion superconductor URu2Si2 has a “hidden order” (HO) phase below the temperature of 17.5 kelvin; the symmetry of the associated order parameter has remained ambiguous. In this study, we use polarization-resolved Raman spectroscopy to specify the symmetry of the low-energy excitations above and below the HO transition. We determine that the HO parameter breaks local vertical and diagonal reflection symmetries at the uranium sites, resulting in crystal field states with distinct chiral properties, which order to a commensurate chirality density wave ground state.},
doi = {10.1126/science.1259729},
journal = {Science},
number = 6228,
volume = 347,
place = {United States},
year = {Fri Mar 20 00:00:00 EDT 2015},
month = {Fri Mar 20 00:00:00 EDT 2015}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Figures / Tables:

Figure 1 Figure 1: Schematics of the local symmetry and band structure of the quasi-localized states in the minimal model, above and below $T$HO. (A) The crystal structure of URu2Si2 in the paramagnetic phase. Presented in 3D and $xy$-plane cut are wave functions that show the symmetry of the $A$2$g$ state |𝟘〉more » and $A$1$g$ |𝟙〉, where the positive (negative) amplitude is denoted by red (blue) color. The $A$1$g$ state is symmetric with respect to the vertical and diagonal reflections, while the $A$2$g$ state is antisymmetric with respect to these reflections. (B) Schematic of the band structure of a minimal model in the paramagnetic state. The green dashed line denotes the conduction band |$CB$〉, the red and black dashed lines denote crystal field states of the U 5$f$ electrons: the ground state |𝟘〉 and the first excited state |𝟙〉. A cartoon of the Raman process is shown, where the blue and red arrows denote the incident and scattered light, respectively. $ω_L$ is the incoming photon energy (not in scale), $\mathbb{W}$ is the hybridization strength between |𝟙〉 and |$CB$〉, $ω_0$ and $ε_k$ are the resonance energies for |𝟘〉 → |𝟙〉 and |𝟘〉 → |$CB$〉, respectively. (C) The crystal structure of URu2Si2 in the HO phase, and wave functions that show the symmetry of the chiral states |𝟘$^{L}_{HO}$〉 and |𝟘$^{R}_{HO}$〉, and the excited state |𝟙HO〉. The left- and right-handed states, denoted by red and blue atoms, respectively, are staggered in the lattice as shown. (D) Show schematics of chirality density wave, where the chiral states are staggered in the lattice (left). The right figure shows one of the possible excited state of the chirality density wave, where the chiral state |𝟘$^{R}_{HO}$〉 at lattice site U2 is excited to |𝟙HO〉.« less

Save / Share:

Works referenced in this record:

Raman Scattering in Mott-Hubbard Systems
journal, January 1991

  • Shastry, B. Sriram; Shraiman, Boris I.
  • International Journal of Modern Physics B, Vol. 05, Issue 01n02
  • DOI: 10.1142/S0217979291000237

Polarized Raman scattering studies of crystal-field excitations in ErNi 2 B 2 C
journal, April 2004


Gapped itinerant spin excitations account for missing entropy in the hidden-order state of URu2Si2
journal, January 2007

  • Wiebe, C. R.; Janik, J. A.; MacDougall, G. J.
  • Nature Physics, Vol. 3, Issue 2
  • DOI: 10.1038/nphys522

Magnetic excitations and phonon anomalies in U Ru 2 Si 2
journal, October 1987


Hastatic order in the heavy-fermion compound URu2Si2
journal, January 2013

  • Chandra, Premala; Coleman, Piers; Flint, Rebecca
  • Nature, Vol. 493, Issue 7434
  • DOI: 10.1038/nature11820

Experimental Observation of an Antisymmetric Raman Scattering Tensor
journal, February 1968

  • Koningstein, J. A.; Mortensen, O. S.
  • Nature, Vol. 217, Issue 5127
  • DOI: 10.1038/217445a0

Heavy-fermion systems
journal, October 1984


Partially gapped Fermi surface in the heavy-electron superconductor URu 2 Si 2
journal, January 1986


Raman scattering and anomalous current algebra in Mott insulators
journal, July 1994


Momentum-Resolved Evolution of the Kondo Lattice into “Hidden Order” in URu 2 Si 2
journal, April 2013


Imaging the Fano lattice to ‘hidden order’ transition in URu2Si2
journal, June 2010

  • Schmidt, A. R.; Hamidian, M. H.; Wahl, P.
  • Nature, Vol. 465, Issue 7298
  • DOI: 10.1038/nature09073

Complex Landau-Ginzburg theory of the hidden order in URu 2 Si 2
journal, March 2010


On the Hidden Order in URu 2 Si 2 – Antiferro Hexadecapole Order and Its Consequences
journal, August 2011

  • Kusunose, Hiroaki; Harima, Hisatomo
  • Journal of the Physical Society of Japan, Vol. 80, Issue 8
  • DOI: 10.1143/JPSJ.80.084702

Hidden order in URu2Si2 originates from Fermi surface gapping induced by dynamic symmetry breaking
journal, February 2009

  • Elgazzar, S.; Rusz, J.; Amft, M.
  • Nature Materials, Vol. 8, Issue 4
  • DOI: 10.1038/nmat2395

Details of Sample Dependence and Transport Properties of URu 2 Si 2
journal, November 2011

  • D. Matsuda, Tatsuma; Hassinger, Elena; Aoki, Dai
  • Journal of the Physical Society of Japan, Vol. 80, Issue 11
  • DOI: 10.1143/JPSJ.80.114710

Arrested Kondo effect and hidden order in URu2Si2
journal, September 2009

  • Haule, Kristjan; Kotliar, Gabriel
  • Nature Physics, Vol. 5, Issue 11
  • DOI: 10.1038/nphys1392

Precise Study of the Resonance at Q 0 =(1,0,0) in URu 2 Si 2
journal, June 2010

  • Bourdarot, Frederic; Hassinger, Elena; Raymond, Stephane
  • Journal of the Physical Society of Japan, Vol. 79, Issue 6
  • DOI: 10.1143/JPSJ.79.064719

Observation of multiple-gap structure in hidden order state of URu 2 Si 2 from optical conductivity
journal, July 2012


High purity specimens of URu 2 Si 2 produced by a molten metal flux technique
journal, April 2014


Visualizing the formation of the Kondo lattice and the hidden order in URu2Si2
journal, May 2010

  • Aynajian, P.; da Silva Neto, E. H.; Parker, C. V.
  • Proceedings of the National Academy of Sciences, Vol. 107, Issue 23
  • DOI: 10.1073/pnas.1005892107

Hybridization gap versus hidden-order gap in URu 2 Si 2 as revealed by optical spectroscopy
journal, May 2012


Super Clean Sample of URu 2 Si 2
journal, January 2008

  • D. Matsuda, Tatsuma; Aoki, Dai; Ikeda, Shugo
  • Journal of the Physical Society of Japan, Vol. 77, Issue Suppl.A
  • DOI: 10.1143/JPSJS.77SA.362

Symmetry of the Excitations in the Hidden Order State of URu 2 Si 2
journal, December 2014


Magnetic excitations in the heavy-fermion superconductor URu 2 Si 2
journal, June 1991


Colloquium : Hidden order, superconductivity, and magnetism: The unsolved case of URu 2 Si 2
journal, November 2011


Far-Infrared Properties of URu 2 Si 2
journal, September 1988


Raman scattering study of the lattice dynamic of URu2Si2 and sample’s preparation
journal, May 2013

  • Buhot, Jonathan; Méasson, Marie-Aude; Gallais, Yann
  • Journal of the Korean Physical Society, Vol. 62, Issue 10
  • DOI: 10.3938/jkps.62.1427

Degree of 5 f electron localization in URu 2 Si 2 : Electron energy-loss spectroscopy and spin-orbit sum rule analysis
journal, July 2010


Lattice dynamics of the heavy-fermion compound URu 2 Si 2
journal, January 2015


Multipolar interactions in f -electron systems: The paradigm of actinide dioxides
journal, June 2009

  • Santini, Paolo; Carretta, Stefano; Amoretti, Giuseppe
  • Reviews of Modern Physics, Vol. 81, Issue 2
  • DOI: 10.1103/RevModPhys.81.807

Momentum-resolved hidden-order gap reveals symmetry breaking and origin of entropy loss in URu2Si2
journal, July 2014

  • Bareille, C.; Boariu, F. L.; Schwab, H.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5326

Rotational Symmetry Breaking in the Hidden-Order Phase of URu2Si2
journal, January 2011


Emergent rank-5 nematic order in URu2Si2
journal, June 2012

  • Ikeda, Hiroaki; Suzuki, Michi-To; Arita, Ryotaro
  • Nature Physics, Vol. 8, Issue 7
  • DOI: 10.1038/nphys2330

Two-magnon Raman scattering in cuprate superconductors: Evolution of magnetic fluctuations with doping
journal, May 1994


Fermi-surface instability at the ‘hidden-order’ transition of URu2Si2
journal, July 2009

  • Santander-Syro, Andrés F.; Klein, Markus; Boariu, Florin L.
  • Nature Physics, Vol. 5, Issue 9
  • DOI: 10.1038/nphys1361

Crystal Field Model of the Magnetic Properties of U Ru 2 Si 2
journal, August 1994


Direct observation of lattice symmetry breaking at the hidden-order transition in URu2Si2
journal, June 2014

  • Tonegawa, S.; Kasahara, S.; Fukuda, T.
  • Nature Communications, Vol. 5, Issue 1
  • DOI: 10.1038/ncomms5188

Hidden orbital order in the heavy fermion metal URu2Si2
journal, June 2002

  • Chandra, P.; Coleman, P.; Mydosh, J. A.
  • Nature, Vol. 417, Issue 6891
  • DOI: 10.1038/nature00795

Heavy-fermion systems
journal, November 2000


Arrested Kondo effect and hidden order in URu_2Si_2
text, January 2009


Visualizing the Formation of the Kondo Lattice and the Hidden Order in URu2Si2
text, January 2010


Precise study of the resonance at Q0=(1,0,0) in URu2Si2
text, January 2010


Imaging the Fano Lattice to 'Hidden Order' Transition in URu2Si2
text, January 2010


Rotational Symmetry Breaking in the Hidden-Order Phase of URu2Si2
text, January 2011


Details of Sample Dependence and Transport Properties of URu2Si2
text, January 2011


Works referencing / citing this record:

Lattice Dynamics, Phonon Chirality, and Spin–Phonon Coupling in 2D Itinerant Ferromagnet Fe 3 GeTe 2
journal, September 2019

  • Du, Luojun; Tang, Jian; Zhao, Yanchong
  • Advanced Functional Materials, Vol. 29, Issue 48
  • DOI: 10.1002/adfm.201904734

Delta-temperatural electronic transportation achieved in metastable perovskite rare-earth nickelate thin films
journal, January 2019

  • Chen, Jikun; Hu, Haiyang; Yajima, Takeaki
  • Journal of Materials Chemistry C, Vol. 7, Issue 26
  • DOI: 10.1039/c9tc02327e

Theory perspective: SCES 2016
journal, September 2016


Chiral superconductors
journal, April 2016


Theory of scanning tunneling spectroscopy: from Kondo impurities to heavy fermion materials
journal, November 2016


Octupolar versus Néel Order in Cubic 5 d 2 Double Perovskites
journal, February 2020


Raman spectroscopy of f -electron metals: An example of CeB 6
journal, June 2019


Orbital-selective Kondo lattice and enigmatic f electrons emerging from inside the antiferromagnetic phase of a heavy fermion
journal, October 2019

  • Giannakis, Ioannis; Leshen, Justin; Kavai, Mariam
  • Science Advances, Vol. 5, Issue 10
  • DOI: 10.1126/sciadv.aaw9061

Persistent coherence of quantum superpositions in an optimally doped cuprate revealed by 2D spectroscopy
journal, February 2020

  • Novelli, Fabio; Tollerud, Jonathan O.; Prabhakaran, Dharmalingam
  • Science Advances, Vol. 6, Issue 9
  • DOI: 10.1126/sciadv.aaw9932

Single Crystal Growth of URu2Si2 by the Modified Bridgman Technique
journal, October 2016

  • Gallagher, Andrew; Nelson, William; Chen, Kuan
  • Crystals, Vol. 6, Issue 10
  • DOI: 10.3390/cryst6100128

Pressure-induced rotational symmetry breaking in URu2Si2
text, January 2018


Persistent coherence of quantum superpositions in an optimally doped cuprate revealed by 2D spectroscopy
text, January 2017


Collective Modes in Excitonic Magnets: Dynamical Mean-Field Study
text, January 2018


Octupolar order in d-orbital Mott insulators
text, January 2019


Figures/Tables have been extracted from DOE-funded journal article accepted manuscripts.