DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Planck 2018 results. V. CMB power spectra and likelihoods

Journal Article · · Astronomy and Astrophysics
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more »; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less

We describe the legacy Planck cosmic microwave background (CMB) likelihoods derived from the 2018 data release. The overall approach is similar in spirit to the one retained for the 2013 and 2015 data release, with a hybrid method using different approximations at low ( < 30) and high ( ≥ 30) multipoles, implementing several methodological and data-analysis refinements compared to previous releases. With more realistic simulations, and better correction and modelling of systematic effects, we can now make full use of the CMB polarization observed in the High Frequency Instrument (HFI) channels. The low-multipole EE cross-spectra from the 100 GHz and 143 GHz data give a constraint on the ΛCDM reionization optical-depth parameter τ to better than 15% (in combination with the TT low- data and the high- temperature and polarization data), tightening constraints on all parameters with posterior distributions correlated with τ. We also update the weaker constraint on τ from the joint TEB likelihood using the Low Frequency Instrument (LFI) channels, which was used in 2015 as part of our baseline analysis. At higher multipoles, the CMB temperature spectrum and likelihood are very similar to previous releases. A better model of the temperature-to-polarization leakage and corrections for the effective calibrations of the polarization channels (i.e., the polarization efficiencies) allow us to make full use of polarization spectra, improving the ΛCDM constraints on the parameters θMC, ωc, ωb, and H0 by more than 30%, and ns by more than 20% compared to TT-only constraints. Extensive tests on the robustness of the modelling of the polarization data demonstrate good consistency, with some residual modelling uncertainties. At high multipoles, we are now limited mainly by the accuracy of the polarization efficiency modelling. Using our various tests, simulations, and comparison between different high-multipole likelihood implementations, we estimate the consistency of the results to be better than the 0.5 σ level on the ΛCDM parameters, as well as classical single-parameter extensions for the joint likelihood (to be compared to the 0.3 σ levels we achieved in 2015 for the temperature data alone on ΛCDM only). Minor curiosities already present in the previous releases remain, such as the differences between the best-fit ΛCDM parameters for the < 800 and > 800 ranges of the power spectrum, or the preference for more smoothing of the power-spectrum peaks than predicted in ΛCDM fits. These are shown to be driven by the temperature power spectrum and are not significantly modified by the inclusion of the polarization data. Overall, the legacy Planck CMB likelihoods provide a robust tool for constraining the cosmological model and represent a reference for future CMB observations.

Research Organization:
Lawrence Berkeley National Laboratory (LBNL), Berkeley, CA (United States)
Sponsoring Organization:
USDOE Office of Science (SC)
Contributing Organization:
Planck Collaboration
Grant/Contract Number:
AC02-05CH11231
OSTI ID:
1676388
Journal Information:
Astronomy and Astrophysics, Vol. 641; ISSN 0004-6361
Publisher:
EDP SciencesCopyright Statement
Country of Publication:
United States
Language:
English

References (87)

Three‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Polarization Analysis journal June 2007
Pico: Parameters for the Impatient Cosmologist journal January 2007
Power spectra based Planck constraints on compensated isocurvature, and forecasts for LiteBIRD and CORE space missions journal April 2017
Planck 2015 results : X. Diffuse component separation: Foreground maps journal September 2016
Efficient Computation of Cosmic Microwave Background Anisotropies in Closed Friedmann‐Robertson‐Walker Models journal August 2000
Tilted physics: A cosmologically dipole-modulated sky journal July 2011
Planck 2015 results : XII. Full focal plane simulations journal September 2016
Likelihood Analysis of CMB Temperature and Polarization Power Spectra text January 2008
Cosmological parameters from pre-planck cosmic microwave background measurements journal May 2013
HEALPix: A Framework for High‐Resolution Discretization and Fast Analysis of Data Distributed on the Sphere journal April 2005
Estimating the power spectrum of the cosmic microwave background journal February 1998
Planck 2013 results. XVI. Cosmological parameters journal October 2014
Conservative Constraints on Early Cosmology: an illustration of the Monte Python cosmological parameter inference code text January 2012
The Atacama Cosmology Telescope: two-season ACTPol spectra and parameters journal June 2017
Planck 2018 results: I. Overview and the cosmological legacy of Planck journal September 2020
Myths and truths concerning estimation of power spectra: the case for a hybrid estimator journal April 2004
Planck 2018 results: IV. Diffuse component separation journal September 2020
Planck intermediate results. XXII. Frequency dependence of thermal emission from Galactic dust in intensity and polarization journal April 2015
CMB polarization can constrain cosmology better than CMB temperature journal September 2014
Planck 2015 results : XI. CMB power spectra, likelihoods, and robustness of parameters journal September 2016
Planck pre-launch status: HFI beam expectations from the optical optimisation of the focal plane journal September 2010
Likelihood, Fisher information, and systematics of cosmic microwave background experiments text January 2012
Planck 2015 results : XIII. Cosmological parameters journal September 2016
How to measure CMB polarization power spectra without losing information journal August 2001
Cosmological parameter constraints as derived from the Wilkinson Microwave Anisotropy Probe data via Gibbs sampling and the Blackwell-Rao estimator journal May 2005
Joint Bayesian Component Separation and CMB Power Spectrum Estimation journal March 2008
Planck 2018 results: VII. Isotropy and statistics of the CMB journal September 2020
Planck 2018 results: VIII. Gravitational lensing journal September 2020
Planck 2018 results: XII. Galactic astrophysics using polarized dust emission journal September 2020
Effect of aberration on partial-sky measurements of the cosmic microwave background temperature power spectrum journal January 2014
Planck 2018 results: X. Constraints on inflation journal September 2020
Modelling the correlation between the thermal Sunyaev Zel'dovich effect and the cosmic infrared background: tSZ–CIB correlation journal November 2012
SRoll2: an improved mapmaking approach to reduce large-scale systematic effects in the Planck High Frequency Instrument legacy maps journal September 2019
Fast estimation of polarization power spectra using correlation functions journal May 2004
Planck 2013 results. XV. CMB power spectra and likelihood journal October 2014
Inflationary features and shifts in cosmological parameters from Planck 2015 data journal October 2017
A Measurement of Secondary Cosmic Microwave Background Anisotropies with two Years of South pole Telescope Observations journal July 2012
A method for extracting maximum resolution power spectra from microwave sky maps journal May 1996
Cosmological parameters from CMB and other data: A Monte Carlo approach journal November 2002
Planck 2018 results: VI. Cosmological parameters journal September 2020
Planck pre-launch status: High Frequency Instrument polarization calibration journal September 2010
Planck 2013 results. VI. High Frequency Instrument data processing journal October 2014
Measurement of CIB power spectra over large sky areas from Planck HFI maps journal December 2016
NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE ( WMAP ) OBSERVATIONS: FINAL MAPS AND RESULTS journal September 2013
Planck 2013 results. XI. All-sky model of thermal dust emission journal October 2014
TEASING: a fast and accurate approximation for the low multipole likelihood of the cosmic microwave background temperature journal November 2009
QuickPol: Fast calculation of effective beam matrices for CMB polarization journal January 2017
Planck intermediate results : XLVI. Reduction of large-scale systematic effects in HFI polarization maps and estimation of the reionization optical depth journal December 2016
Likelihood, Fisher information, and systematics of cosmic microwave background experiments journal June 2012
Measurements of the Temperature and E-mode Polarization of the CMB from 500 Square Degrees of SPTpol Data journal January 2018
Planck intermediate results : LI. Features in the cosmic microwave background temperature power spectrum and shifts in cosmological parameters journal November 2017
The Atacama Cosmology Telescope: likelihood for small-scale CMB data journal July 2013
Planck 2013 results. XXVII. Doppler boosting of the CMB: Eppur si muove journal October 2014
Do Baryons Trace Dark Matter in the Early Universe? journal December 2011
XSPECT, estimation of the angular power spectrum by computing cross-power spectra with analytical error bars journal April 2005
New estimates of the CMB angular power spectra from the WMAP 5 year low-resolution data journal November 2009
Planck 2018 results: II. Low Frequency Instrument data processing journal September 2020
Pico: Parameters for the Impatient Cosmologist journal January 2007
QUANTIFYING DISCORDANCE IN THE 2015 PLANCK CMB SPECTRUM journal February 2016
A CMB polarization primer journal October 1997
Three‐Year Wilkinson Microwave Anisotropy Probe ( WMAP ) Observations: Implications for Cosmology journal June 2007
Planck intermediate results : XLI. A map of lensing-induced journal December 2016
Planck 2013 results. XXX. Cosmic infrared background measurements and implications for star formation journal October 2014
Fast Spherical Harmonic Analysis: A Quick Algorithm for Generating and/or InvertingFull-Sky, High-Resolution Cosmic Microwave Background Anisotropy Maps journal October 1997
Compensated isocurvature perturbations and the cosmic microwave background journal December 2011
SRoll2: an improved mapmaking approach to reduce large-scale systematic effects in the Planck High Frequency Instrument legacy maps journal September 2019
WMAP 7 year constraints on CPT violation from large angle CMB anisotropies journal February 2012
Cosmic Microwave Background Likelihood Approximation by a Gaussianized Blackwell-Rao Estimator journal February 2009
Planck 2013 results. VII. HFI time response and beams journal October 2014
A simple empirically motivated template for the thermal Sunyaev-Zel’dovich effect journal May 2012
Planck 2015 results : VIII. High Frequency Instrument data processing: Calibration and maps journal September 2016
Residual noise covariance for Planck low-resolution data analysis journal November 2010
Planck 2015 results : XV. Gravitational lensing journal September 2016
Templates for the Sunyaev-Zel’Dovich Angular Power Spectrum journal January 2011
Likelihood analysis of CMB temperature and polarization power spectra journal May 2008
All-sky analysis of polarization in the microwave background journal February 1997
Hybrid estimation of cosmic microwave background polarization power spectra journal July 2006
MASTER of the Cosmic Microwave Background Anisotropy Power Spectrum: A Fast Method for Statistical Analysis of Large and Complex Cosmic Microwave Background Data Sets journal March 2002
Planck 2018 results: III. High Frequency Instrument data processing and frequency maps journal September 2020
Planck 2018 results: IX. Constraints on primordial non-Gaussianity journal September 2020
CMB Polarization can constrain cosmology better than CMB temperature text January 2014
Planck 2015 results : IX. Diffuse component separation: CMB maps journal September 2016
Planck 2018 results: XI. Polarized dust foregrounds journal September 2020
Power Spectra Based Planck Constraints on Compensated Isocurvature, and Forecasts for LiteBIRD and CORE Space Missions text January 2017
New estimates of the CMB angular power spectra from the WMAP 5 yrs low resolution data text January 2009
Reionization optical depth determination from Planck HFI data with ten percent accuracy journal March 2020
Statistics of cosmic microwave background polarization journal June 1997

Cited By (10)

Re-evaluating evidence for Hawking points in the CMB journal March 2020
The flickering nuclear activity of Fornax A journal January 2020
CMB foreground measurements through broad-band radio spectro-polarimetry: prospects of the SKA-MPG telescope journal June 2019
Local Bubble contribution to the 353-GHz dust polarized emission journal November 2019
A physical approach to modelling large-scale galactic magnetic fields journal March 2019
Extreme starlight polarization in a region with highly polarized dust emission journal April 2019
Reionization optical depth determination from Planck HFI data with ten percent accuracy journal March 2020
Gas shells and magnetic fields in the Orion-Eridanus superbubble journal October 2019
Link between EB polarization modes and gas column density from interstellar dust emission journal November 2019
Statistics of non-polarized points in the CMB polarization maps text January 2020

Figures / Tables (100)

Fig. 1(p. 6)figure Fig. 1
Fig. 2(p. 7)figure Fig. 2
Fig. 3(p. 7)figure Fig. 3
Fig. 4(p. 8)figure Fig. 4
Fig. 5(p. 8)figure Fig. 5
Table 1(p. 8)table Table 1
Fig. 6(p. 9)figure Fig. 6
Fig. 7(p. 10)figure Fig. 7
Table 2(p. 10)table Table 2
Table 3(p. 11)table Table 3
Table 4(p. 11)table Table 4
Fig. 10(p. 12)figure Fig. 10
Fig. 8(p. 12)figure Fig. 8
Fig. 9(p. 12)figure Fig. 9
Table 5(p. 13)table Table 5
Table 6(p. 13)table Table 6
Table 7(p. 14)table Table 7
Fig. 11(p. 15)figure Fig. 11
Fig. 12(p. 15)figure Fig. 12
Fig. 13(p. 16)figure Fig. 13
Fig. 14(p. 16)figure Fig. 14
Fig. 15(p. 17)figure Fig. 15
Fig. 17(p. 17)figure Fig. 17
Fig.16(p. 17)figure Fig.16
Fig. 18(p. 18)figure Fig. 18
Fig. 19(p. 18)figure Fig. 19
Fig. 20(p. 18)figure Fig. 20
Fig. 21(p. 20)figure Fig. 21
Table 8(p. 20)table Table 8
Fig. 22(p. 21)figure Fig. 22
Fig. 23(p. 22)figure Fig. 23
Fig. 24(p. 22)figure Fig. 24
Table 9(p. 22)table Table 9
Fig. 25(p. 23)figure Fig. 25
Table 10(p. 23)table Table 10
Fig.26(p. 24)figure Fig.26
Fig. 27(p. 25)figure Fig. 27
Table 11(p. 25)table Table 11
Table 12(p. 25)table Table 12
Fig. 28(p. 26)figure Fig. 28
Fig. 29(p. 28)figure Fig. 29
Fig. 30(p. 29)figure Fig. 30
Table 13(p. 29)table Table 13
Fig. 31(p. 30)figure Fig. 31
Fig. 32(p. 32)figure Fig. 32
Table 14(p. 32)table Table 14
Fig. 33(p. 33)figure Fig. 33
Fig. 34(p. 34)figure Fig. 34
Fig. 35(p. 35)figure Fig. 35
Fig. 36(p. 36)figure Fig. 36
Fig. 37(p. 37)figure Fig. 37
Fig. 38(p. 38)figure Fig. 38
Fig. 39(p. 38)figure Fig. 39
Fig. 40(p. 39)figure Fig. 40
Fig. 41(p. 41)figure Fig. 41
Fig. 42(p. 41)figure Fig. 42
Fig. 43(p. 42)figure Fig. 43
Fig. 44(p. 42)figure Fig. 44
Fig. 45(p. 42)figure Fig. 45
Fig. 46(p. 43)figure Fig. 46
Fig. 47(p. 43)figure Fig. 47
Fig. 48(p. 44)figure Fig. 48
Table 15(p. 44)table Table 15
Fig. 49(p. 46)figure Fig. 49
Fig. 50(p. 51)figure Fig. 50
Fig. 51(p. 52)figure Fig. 51
Fig. 52(p. 53)figure Fig. 52
Table 16(p. 55)table Table 16
Fig. 53(p. 56)figure Fig. 53
Table 17(p. 56)table Table 17
Fig. 54(p. 57)figure Fig. 54
Table 18(p. 57)table Table 18
Table 19(p. 57)table Table 19
Fig. 55(p. 58)figure Fig. 55
Fig. 56(p. 58)figure Fig. 56
Fig. 57(p. 60)figure Fig. 57
Fig. 58(p. 61)figure Fig. 58
Fig. 59(p. 62)figure Fig. 59
Table 20(p. 62)table Table 20
Fig. 60(p. 64)figure Fig. 60
Fig. 61(p. 64)figure Fig. 61
Fig. 62(p. 64)figure Fig. 62
Fig. 63(p. 65)figure Fig. 63
Fig. 64(p. 66)figure Fig. 64
Fig. 65(p. 67)figure Fig. 65
Fig. 66(p. 68)figure Fig. 66
Fig. 67(p. 69)figure Fig. 67
Fig. 68(p. 69)figure Fig. 68
Fig. 69(p. 70)figure Fig. 69
Fig. 70(p. 70)figure Fig. 70
Fig. 71(p. 71)figure Fig. 71
Fig. 72(p. 72)figure Fig. 72
Fig. 73(p. 73)figure Fig. 73
Fig. 74(p. 73)figure Fig. 74
Fig. 75(p. 74)figure Fig. 75
Fig. 76(p. 75)figure Fig. 76
Fig. 77(p. 75)figure Fig. 77
Fig. 78(p. 77)figure Fig. 78
Fig. 79(p. 78)figure Fig. 79
Fig. 80(p. 79)figure Fig. 80