skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz

Abstract

ABSTRACT At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≈106 M⊙, disrupting a star of ≈1 M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t2, consistent with a photosphere expanding at constant velocity (≳2000 km s−1), and a line-forming region producing initially blueshifted H and He ii profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling atmore » constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N iii) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.« less

Authors:
ORCiD logo [1]; ORCiD logo [2]; ORCiD logo [3];  [4];  [5]; ORCiD logo [6];  [7];  [8];  [9];  [10];  [5];  [11];  [11];  [12]; ORCiD logo [13]; ORCiD logo [14]; ORCiD logo [15]; ORCiD logo [13];  [16];  [16] more »;  [16];  [16];  [16];  [17];  [18];  [8];  [4]; ORCiD logo [12];  [19];  [20]; ORCiD logo [21]; ORCiD logo [22];  [8]; ORCiD logo [23];  [15]; ORCiD logo [24]; ORCiD logo [25];  [26]; ORCiD logo [13];  [27];  [28];  [28];  [17];  [11];  [28] « less
  1. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK, Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill EH9 3HJ, UK
  2. Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 0HA, UK
  3. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK
  4. Center for Interdisciplinary Exploration and Research in Astrophysics and Department of Physics and Astronomy, Northwestern University, 2145 Sheridan Road, Evanston, IL 60208-3112, USA
  5. DTU Space, National Space Institute, Technical University of Denmark, Elektrovej 327, DK-2800 Kgs. Lyngby, Denmark
  6. Istituto di Astrofisica e Planetologia Spaziali (INAF), Via Fosso del Cavaliere 100, I-00133 Roma, Italy
  7. Max-Planck-Institut für Astrophysik, Karl-Schwarzschild Str. 1, D-85748 Garching, Germany, Department of Astronomy, Stockholm University, The Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm, Sweden
  8. Center for Astrophysics | Harvard & Smithsonian, 60 Garden Street, Cambridge, MA 02138-1516, USA
  9. INAF-Osservatorio Astronomico di Brera, via Bianchi 46, I-23807 Merate (LC), Italy
  10. The School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel, CIFAR Azrieli Global Scholars program, CIFAR, 661 University Ave. Suite 505, Toronto, ON M5G 1M1, Canada
  11. Astronomical Observatory, University of Warsaw, Al. Ujazdowskie 4, PL-00-478 Warszawa, Poland
  12. Department of Astrophysics/IMAPP, Radboud University, PO Box 9010, NL-6500 GL Nijmegen, the Netherlands, SRON, Netherlands Institute for Space Research, Sorbonnelaan 2, NL-3584 CA Utrecht, the Netherlands
  13. Institute for Astronomy, University of Edinburgh, Royal Observatory, Blackford Hill EH9 3HJ, UK
  14. Birmingham Institute for Gravitational Wave Astronomy and School of Physics and Astronomy, University of Birmingham, Birmingham B15 2TT, UK, Monash Centre for Astrophysics, School of Physics and Astronomy, Monash University, Clayton, Victoria 3800, Australia, The ARC Center of Excellence for Gravitational Wave Discovery–OzGrav, Swinburne University of Technology, PO Box 218, Hawthorn, VIC 3122, Australia
  15. Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 234 Herzl St, Rehovot 76100, Israel
  16. Las Cumbres Observatory, 6740 Cortona Dr, Suite 102, Goleta, CA 93117-5575, USA, Department of Physics, University of California, Santa Barbara, CA 93106-9530, USA
  17. The Research School of Astronomy and Astrophysics, Australian National University, Canberra, ACT 2601, Australia
  18. European Southern Observatory, Alonso de Coŕdova 3107, Vitacura, Casilla 190001, Santiago, Chile
  19. Department of Astronomy, Stockholm University, The Oskar Klein Centre, AlbaNova, SE-106 91 Stockholm, Sweden
  20. Institute of Astrophysics Paris (IAP), and Sorbonne University, 98bis Boulevard Arago, F-75014 Paris, France
  21. Departamento de Física Teórica y del Cosmos, Universidad de Granada, E-18071 Granada, Spain
  22. CENTRA-Centro de Astrofísica e Gravitação and Departamento de Física, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, P-1049-001 Lisboa, Portugal
  23. School of Physics & Astronomy, Cardiff University, Queens Buildings, The Parade, Cardiff CF24 3AA, UK
  24. Mullard Space Science Laboratory, University College London, Holmbury St Mary, Dorking, Surrey RH5 6NT, UK
  25. School of Physics and Astronomy, University of Southampton, Southampton SO17 1BJ, UK
  26. Departamento de Ciencias Fisicas, Universidad Andrés Bello, Avda. Republica 252, Santiago, Chile
  27. The Inter-University Centre for Astronomy and Astrophysics, Ganeshkhind, Pune 411007, India
  28. Astrophysics Research Centre, School of Mathematics and Physics, Queens University Belfast, Belfast BT7 1NN, UK
Publication Date:
Sponsoring Org.:
USDOE Office of Energy Efficiency and Renewable Energy (EERE), Transportation Office. Fuel Cell Technologies Office
OSTI Identifier:
1671851
Grant/Contract Number:  
CRISP PTDC/FIS-AST-31546; UIDB/00099/2020
Resource Type:
Published Article
Journal Name:
Monthly Notices of the Royal Astronomical Society
Additional Journal Information:
Journal Name: Monthly Notices of the Royal Astronomical Society Journal Volume: 499 Journal Issue: 1; Journal ID: ISSN 0035-8711
Publisher:
Oxford University Press
Country of Publication:
United Kingdom
Language:
English

Citation Formats

Nicholl, M., Wevers, T., Oates, S. R., Alexander, K. D., Leloudas, G., Onori, F., Jerkstrand, A., Gomez, S., Campana, S., Arcavi, I., Charalampopoulos, P., Gromadzki, M., Ihanec, N., Jonker, P. G., Lawrence, A., Mandel, I., Schulze, S., Short, P., Burke, J., McCully, C., Hiramatsu, D., Howell, D. A., Pellegrino, C., Abbot, H., Anderson, J. P., Berger, E., Blanchard, P. K., Cannizzaro, G., Chen, T-W, Dennefeld, M., Galbany, L., González-Gaitán, S., Hosseinzadeh, G., Inserra, C., Irani, I., Kuin, P., Müller-Bravo, T., Pineda, J., Ross, N. P., Roy, R., Smartt, S. J., Smith, K. W., Tucker, B., Wyrzykowski, Ł., and Young, D. R. An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. United Kingdom: N. p., 2020. Web. doi:10.1093/mnras/staa2824.
Nicholl, M., Wevers, T., Oates, S. R., Alexander, K. D., Leloudas, G., Onori, F., Jerkstrand, A., Gomez, S., Campana, S., Arcavi, I., Charalampopoulos, P., Gromadzki, M., Ihanec, N., Jonker, P. G., Lawrence, A., Mandel, I., Schulze, S., Short, P., Burke, J., McCully, C., Hiramatsu, D., Howell, D. A., Pellegrino, C., Abbot, H., Anderson, J. P., Berger, E., Blanchard, P. K., Cannizzaro, G., Chen, T-W, Dennefeld, M., Galbany, L., González-Gaitán, S., Hosseinzadeh, G., Inserra, C., Irani, I., Kuin, P., Müller-Bravo, T., Pineda, J., Ross, N. P., Roy, R., Smartt, S. J., Smith, K. W., Tucker, B., Wyrzykowski, Ł., & Young, D. R. An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz. United Kingdom. doi:10.1093/mnras/staa2824.
Nicholl, M., Wevers, T., Oates, S. R., Alexander, K. D., Leloudas, G., Onori, F., Jerkstrand, A., Gomez, S., Campana, S., Arcavi, I., Charalampopoulos, P., Gromadzki, M., Ihanec, N., Jonker, P. G., Lawrence, A., Mandel, I., Schulze, S., Short, P., Burke, J., McCully, C., Hiramatsu, D., Howell, D. A., Pellegrino, C., Abbot, H., Anderson, J. P., Berger, E., Blanchard, P. K., Cannizzaro, G., Chen, T-W, Dennefeld, M., Galbany, L., González-Gaitán, S., Hosseinzadeh, G., Inserra, C., Irani, I., Kuin, P., Müller-Bravo, T., Pineda, J., Ross, N. P., Roy, R., Smartt, S. J., Smith, K. W., Tucker, B., Wyrzykowski, Ł., and Young, D. R. Mon . "An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz". United Kingdom. doi:10.1093/mnras/staa2824.
@article{osti_1671851,
title = {An outflow powers the optical rise of the nearby, fast-evolving tidal disruption event AT2019qiz},
author = {Nicholl, M. and Wevers, T. and Oates, S. R. and Alexander, K. D. and Leloudas, G. and Onori, F. and Jerkstrand, A. and Gomez, S. and Campana, S. and Arcavi, I. and Charalampopoulos, P. and Gromadzki, M. and Ihanec, N. and Jonker, P. G. and Lawrence, A. and Mandel, I. and Schulze, S. and Short, P. and Burke, J. and McCully, C. and Hiramatsu, D. and Howell, D. A. and Pellegrino, C. and Abbot, H. and Anderson, J. P. and Berger, E. and Blanchard, P. K. and Cannizzaro, G. and Chen, T-W and Dennefeld, M. and Galbany, L. and González-Gaitán, S. and Hosseinzadeh, G. and Inserra, C. and Irani, I. and Kuin, P. and Müller-Bravo, T. and Pineda, J. and Ross, N. P. and Roy, R. and Smartt, S. J. and Smith, K. W. and Tucker, B. and Wyrzykowski, Ł. and Young, D. R.},
abstractNote = {ABSTRACT At 66 Mpc, AT2019qiz is the closest optical tidal disruption event (TDE) to date, with a luminosity intermediate between the bulk of the population and the faint-and-fast event iPTF16fnl. Its proximity allowed a very early detection and triggering of multiwavelength and spectroscopic follow-up well before maximum light. The velocity dispersion of the host galaxy and fits to the TDE light curve indicate a black hole mass ≈106 M⊙, disrupting a star of ≈1 M⊙. By analysing our comprehensive UV, optical, and X-ray data, we show that the early optical emission is dominated by an outflow, with a luminosity evolution L ∝ t2, consistent with a photosphere expanding at constant velocity (≳2000 km s−1), and a line-forming region producing initially blueshifted H and He ii profiles with v = 3000–10 000 km s−1. The fastest optical ejecta approach the velocity inferred from radio detections (modelled in a forthcoming companion paper from K. D. Alexander et al.), thus the same outflow may be responsible for both the fast optical rise and the radio emission – the first time this connection has been observed in a TDE. The light-curve rise begins 29 ± 2 d before maximum light, peaking when the photosphere reaches the radius where optical photons can escape. The photosphere then undergoes a sudden transition, first cooling at constant radius then contracting at constant temperature. At the same time, the blueshifts disappear from the spectrum and Bowen fluorescence lines (N iii) become prominent, implying a source of far-UV photons, while the X-ray light curve peaks at ≈1041 erg s−1. Assuming that these X-rays are from prompt accretion, the size and mass of the outflow are consistent with the reprocessing layer needed to explain the large optical to X-ray ratio in this and other optical TDEs, possibly favouring accretion-powered over collision-powered outflow models.},
doi = {10.1093/mnras/staa2824},
journal = {Monthly Notices of the Royal Astronomical Society},
number = 1,
volume = 499,
place = {United Kingdom},
year = {2020},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record
DOI: 10.1093/mnras/staa2824

Save / Share:

Works referenced in this record:

MID-INFRARED SELECTION OF ACTIVE GALACTIC NUCLEI WITH THE WIDE-FIELD INFRARED SURVEY EXPLORER . I. CHARACTERIZING WISE -SELECTED ACTIVE GALACTIC NUCLEI IN COSMOS
journal, June 2012

  • Stern, Daniel; Assef, Roberto J.; Benford, Dominic J.
  • The Astrophysical Journal, Vol. 753, Issue 1
  • DOI: 10.1088/0004-637X/753/1/30

Transient astronomy with the Gaia satellite
journal, June 2013

  • Hodgkin, Simon T.; Wyrzykowski, Łukasz; Blagorodnova, Nadejda
  • Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, Vol. 371, Issue 1992
  • DOI: 10.1098/rsta.2012.0239

X-shooter, the new wide band intermediate resolution spectrograph at the ESO Very Large Telescope
journal, December 2011


The tidal disruption event AT2017eqx: spectroscopic evolution from hydrogen rich to poor suggests an atmosphere and outflow
journal, July 2019

  • Nicholl, M.; Blanchard, P. K.; Berger, E.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 2
  • DOI: 10.1093/mnras/stz1837

The Zwicky Transient Facility: System Overview, Performance, and First Results
journal, December 2018

  • Bellm, Eric C.; Kulkarni, Shrinivas R.; Graham, Matthew J.
  • Publications of the Astronomical Society of the Pacific, Vol. 131, Issue 995
  • DOI: 10.1088/1538-3873/aaecbe

The First Tidal Disruption Flare in ZTF: From Photometric Selection to Multi-wavelength Characterization
journal, February 2019

  • van Velzen, Sjoert; Gezari, Suvi; Cenko, S. Bradley
  • The Astrophysical Journal, Vol. 872, Issue 2
  • DOI: 10.3847/1538-4357/aafe0c

A Dependence of the Tidal Disruption Event Rate on Global Stellar Surface Mass Density and Stellar Velocity Dispersion
journal, January 2018

  • Graur, Or; French, K. Decker; Zahid, H. Jabran
  • The Astrophysical Journal, Vol. 853, Issue 1
  • DOI: 10.3847/1538-4357/aaa3fd

Black hole masses of tidal disruption event host galaxies
journal, July 2017

  • Wevers, Thomas; van Velzen, Sjoert; Jonker, Peter G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 471, Issue 2
  • DOI: 10.1093/mnras/stx1703

iPTF16fnl: A Faint and Fast Tidal Disruption Event in an E+A Galaxy
journal, July 2017


Revisiting Optical Tidal Disruption Events with iPTF16axa
journal, June 2017


Six months of multiwavelength follow-up of the tidal disruption candidate ASASSN-14li and implied TDE rates from ASAS-SN
journal, November 2015

  • Holoien, T. W. -S.; Kochanek, C. S.; Prieto, J. L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 455, Issue 3
  • DOI: 10.1093/mnras/stv2486

Late-time UV Observations of Tidal Disruption Flares Reveal Unobscured, Compact Accretion Disks
journal, June 2019

  • van Velzen, Sjoert; Stone, Nicholas C.; Metzger, Brian D.
  • The Astrophysical Journal, Vol. 878, Issue 2
  • DOI: 10.3847/1538-4357/ab1844

X-Ray Brightening and UV Fading of Tidal Disruption Event ASASSN-15oi
journal, December 2017


The Keck Low-Resolution Imaging Spectrometer
journal, April 1995

  • Oke, J. B.; Cohen, J. G.; Carr, M.
  • Publications of the Astronomical Society of the Pacific, Vol. 107
  • DOI: 10.1086/133562

Detailed Structural Decomposition of Galaxy Images
journal, July 2002

  • Peng, Chien Y.; Ho, Luis C.; Impey, Chris D.
  • The Astronomical Journal, Vol. 124, Issue 1
  • DOI: 10.1086/340952

Gaia transients in galactic nuclei
journal, August 2018

  • Kostrzewa-Rutkowska, Z.; Jonker, P. G.; Hodgkin, S. T.
  • Monthly Notices of the Royal Astronomical Society, Vol. 481, Issue 1
  • DOI: 10.1093/mnras/sty2221

What Sets the Line Profiles in Tidal Disruption Events?
journal, March 2018


Optical flares from the tidal disruption of stars by massive black holes: Optical signatures of tidally disrupted stars
journal, December 2009


An Updated Ultraviolet Calibration for the Swift∕UVOT
conference, January 2011

  • Breeveld, A. A.; Landsman, W.; Holland, S. T.
  • GAMMA RAY BURSTS 2010, AIP Conference Proceedings
  • DOI: 10.1063/1.3621807

The influence of circumnuclear environment on the radio emission from TDE jets
journal, September 2016

  • Generozov, A.; Mimica, P.; Metzger, B. D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 464, Issue 2
  • DOI: 10.1093/mnras/stw2439

Black hole masses of tidal disruption event host galaxies II
journal, June 2019

  • Wevers, Thomas; Stone, Nicholas C.; van Velzen, Sjoert
  • Monthly Notices of the Royal Astronomical Society, Vol. 487, Issue 3
  • DOI: 10.1093/mnras/stz1602

Revisiting the Scaling Relations of Black hole Masses and host Galaxy Properties
journal, February 2013


MOSFiT: Modular Open Source Fitter for Transients
journal, May 2018

  • Guillochon, James; Nicholl, Matt; Villar, V. Ashley
  • The Astrophysical Journal Supplement Series, Vol. 236, Issue 1
  • DOI: 10.3847/1538-4365/aab761

A Possible Relativistic Jetted Outburst from a Massive Black Hole Fed by a Tidally Disrupted Star
journal, June 2011


ASASSN-15oi: a rapidly evolving, luminous tidal disruption event at 216 Mpc
journal, September 2016

  • Holoien, T. W. -S.; Kochanek, C. S.; Prieto, J. L.
  • Monthly Notices of the Royal Astronomical Society, Vol. 463, Issue 4
  • DOI: 10.1093/mnras/stw2272

The relationship between infrared, optical, and ultraviolet extinction
journal, October 1989

  • Cardelli, Jason A.; Clayton, Geoffrey C.; Mathis, John S.
  • The Astrophysical Journal, Vol. 345
  • DOI: 10.1086/167900

Soft X-Ray Temperature Tidal Disruption Events from Stars on deep Plunging Orbits
journal, October 2015


On the diversity of superluminous supernovae: ejected mass as the dominant factor
journal, August 2015

  • Nicholl, M.; Smartt, S. J.; Jerkstrand, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 452, Issue 4
  • DOI: 10.1093/mnras/stv1522

The superluminous transient ASASSN-15lh as a tidal disruption event from a Kerr black hole
journal, December 2016


Self-intersection of the fallback stream in tidal disruption events
journal, December 2019

  • Lu, Wenbin; Bonnerot, Clément
  • Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 1
  • DOI: 10.1093/mnras/stz3405

PS16dtm: A Tidal Disruption Event in a Narrow-line Seyfert 1 Galaxy
journal, July 2017


The aftermath of tidal disruption: The dynamics of thin gas streams
journal, February 1994

  • Kochanek, Christopher S.
  • The Astrophysical Journal, Vol. 422
  • DOI: 10.1086/173745

Evidence for rapid disc formation and reprocessing in the X-ray bright tidal disruption event candidate AT 2018fyk
journal, July 2019

  • Wevers, T.; Pasham, D. R.; van Velzen, S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 488, Issue 4
  • DOI: 10.1093/mnras/stz1976

Weighing Black Holes Using Tidal Disruption Events
journal, February 2019

  • Mockler, Brenna; Guillochon, James; Ramirez-Ruiz, Enrico
  • The Astrophysical Journal, Vol. 872, Issue 2
  • DOI: 10.3847/1538-4357/ab010f

SPECTRAL EVOLUTION OF THE EXTRAORDINARY TYPE IIn SUPERNOVA 2006gy
journal, January 2010


Disc origin of broad optical emission lines of the TDE candidate PTF09djl
journal, September 2017

  • Liu, F. K.; Zhou, Z. Q.; Cao, R.
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 472, Issue 1
  • DOI: 10.1093/mnrasl/slx147

Fainter harder brighter softer: a correlation between αox, X-ray spectral state, and Eddington ratio in tidal disruption events
journal, May 2020

  • Wevers, Thomas
  • Monthly Notices of the Royal Astronomical Society: Letters, Vol. 497, Issue 1
  • DOI: 10.1093/mnrasl/slaa097

THE M -σ AND M - L RELATIONS IN GALACTIC BULGES, AND DETERMINATIONS OF THEIR INTRINSIC SCATTER
journal, May 2009

  • Gültekin, Kayhan; Richstone, Douglas O.; Gebhardt, Karl
  • The Astrophysical Journal, Vol. 698, Issue 1
  • DOI: 10.1088/0004-637X/698/1/198

The spectral evolution of disc dominated tidal disruption events
journal, January 2020

  • Mummery, Andrew; Balbus, Steven A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 492, Issue 4
  • DOI: 10.1093/mnras/staa192

General Relativistic Hydrodynamic Simulation of Accretion flow from a Stellar Tidal Disruption
journal, May 2015

  • Shiokawa, Hotaka; Krolik, Julian H.; Cheng, Roseanne M.
  • The Astrophysical Journal, Vol. 804, Issue 2
  • DOI: 10.1088/0004-637X/804/2/85

Measuring Reddening with Sloan Digital sky Survey Stellar Spectra and Recalibrating sfd
journal, August 2011


Prompt Radiation and mass Outflows from the Stream–Stream Collisions of Tidal Disruption Events
journal, October 2016

  • Jiang (姜燕飞), Yan-Fei; Guillochon, James; Loeb, Abraham
  • The Astrophysical Journal, Vol. 830, Issue 2
  • DOI: 10.3847/0004-637X/830/2/125

Tidal Disruption Event Host Galaxies in the Context of the Local Galaxy Population
journal, November 2017

  • Law-Smith, Jamie; Ramirez-Ruiz, Enrico; Ellison, Sara L.
  • The Astrophysical Journal, Vol. 850, Issue 1
  • DOI: 10.3847/1538-4357/aa94c7

SuperBol: A User-friendly Python Routine for Bolometric Light Curves
journal, October 2018


PS1-10jh: THE DISRUPTION OF A MAIN-SEQUENCE STAR OF NEAR-SOLAR COMPOSITION
journal, February 2014

  • Guillochon, James; Manukian, Haik; Ramirez-Ruiz, Enrico
  • The Astrophysical Journal, Vol. 783, Issue 1
  • DOI: 10.1088/0004-637X/783/1/23

Chaotic Loss Cones and Black Hole Fueling
journal, May 2004

  • Merritt, David; Poon, M. Y.
  • The Astrophysical Journal, Vol. 606, Issue 2
  • DOI: 10.1086/382497

The Spectrum and Composition of the Gaseous Nebulae
journal, January 1935


The Broad Absorption Line Tidal Disruption Event iPTF15af: Optical and Ultraviolet Evolution
journal, March 2019

  • Blagorodnova, N.; Cenko, S. B.; Kulkarni, S. R.
  • The Astrophysical Journal, Vol. 873, Issue 1
  • DOI: 10.3847/1538-4357/ab04b0

The Zwicky Transient Facility Alert Distribution System
journal, November 2018

  • Patterson, Maria T.; Bellm, Eric C.; Rusholme, Ben
  • Publications of the Astronomical Society of the Pacific, Vol. 131, Issue 995
  • DOI: 10.1088/1538-3873/aae904

Simulating disc formation in tidal disruption events
journal, May 2020

  • Bonnerot, Clément; Lu, Wenbin
  • Monthly Notices of the Royal Astronomical Society, Vol. 495, Issue 1
  • DOI: 10.1093/mnras/staa1246

A dust-enshrouded tidal disruption event with a resolved radio jet in a galaxy merger
journal, June 2018


Ensemble samplers with affine invariance
journal, January 2010

  • Goodman, Jonathan; Weare, Jonathan
  • Communications in Applied Mathematics and Computational Science, Vol. 5, Issue 1
  • DOI: 10.2140/camcos.2010.5.65

Optical follow-up of the tidal disruption event iPTF16fnl: new insights from X-shooter observations
journal, July 2019

  • Onori, F.; Cannizzaro, G.; Jonker, P. G.
  • Monthly Notices of the Royal Astronomical Society, Vol. 489, Issue 1
  • DOI: 10.1093/mnras/stz2053

Lasair: The Transient Alert Broker for LSST:UK
journal, January 2019


Swift J2058.4+0516: Discovery of a Possible Second Relativistic Tidal Disruption Flare?
journal, June 2012


A population of highly energetic transient events in the centres of active galaxies
journal, November 2017


Classification parameters for the emission-line spectra of extragalactic objects
journal, February 1981

  • Baldwin, J. A.; Phillips, M. M.; Terlevich, R.
  • Publications of the Astronomical Society of the Pacific, Vol. 93
  • DOI: 10.1086/130766

The Spectral Evolution of AT 2018dyb and the Presence of Metal Lines in Tidal Disruption Events
journal, December 2019

  • Leloudas, Giorgos; Dai, Lixin; Arcavi, Iair
  • The Astrophysical Journal, Vol. 887, Issue 2
  • DOI: 10.3847/1538-4357/ab5792

Implications from Late-time X-Ray Detections of Optically Selected Tidal Disruption Events: State Changes, Unification, and Detection Rates
journal, February 2020


The O3N2 and N2 abundance indicators revisited: improved calibrations based on CALIFA and T e -based literature data
journal, November 2013


Relativistic jet activity from the tidal disruption of a star by a massive black hole
journal, August 2011

  • Burrows, D. N.; Kennea, J. A.; Ghisellini, G.
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10374

Discovery of Highly Blueshifted Broad Balmer and Metastable Helium Absorption Lines in a Tidal Disruption Event
journal, July 2019


Las Cumbres Observatory Global Telescope Network
journal, September 2013

  • Brown, T. M.; Baliber, N.; Bianco, F. B.
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 931
  • DOI: 10.1086/673168

On the Missing Energy Puzzle of Tidal Disruption Events
journal, September 2018


Gaia Data Release 2 : Summary of the contents and survey properties
journal, August 2018


Theoretical Modeling of Starburst Galaxies
journal, July 2001

  • Kewley, L. J.; Dopita, M. A.; Sutherland, R. S.
  • The Astrophysical Journal, Vol. 556, Issue 1
  • DOI: 10.1086/321545

The tidal disruption event AT 2018hyz – I. Double-peaked emission lines and a flat Balmer decrement
journal, September 2020

  • Short, P.; Nicholl, M.; Lawrence, A.
  • Monthly Notices of the Royal Astronomical Society, Vol. 498, Issue 3
  • DOI: 10.1093/mnras/staa2065

The Relationship of Hard X‐Ray and Optical Line Emission in Low‐Redshift Active Galactic Nuclei
journal, November 2005

  • Heckman, T. M.; Ptak, A.; Hornschemeier, A.
  • The Astrophysical Journal, Vol. 634, Issue 1
  • DOI: 10.1086/491665

DISCOVERY OF AN OUTFLOW FROM RADIO OBSERVATIONS OF THE TIDAL DISRUPTION EVENT ASASSN-14li
journal, March 2016


Gaia Data Release 1: Pre-processing and source list creation
journal, November 2016


A bright year for tidal disruptions
journal, June 2016

  • Metzger, Brian D.; Stone, Nicholas C.
  • Monthly Notices of the Royal Astronomical Society, Vol. 461, Issue 1
  • DOI: 10.1093/mnras/stw1394

Methods and results of an automatic analysis of a complete sample of Swift -XRT observations of GRBs
journal, August 2009


The Structure of Tidal Disruption Event Host Galaxies on Scales of Tens to Thousands of Parsecs
journal, March 2020

  • French, K. Decker; Arcavi, Iair; Zabludoff, Ann I.
  • The Astrophysical Journal, Vol. 891, Issue 1
  • DOI: 10.3847/1538-4357/ab7450

The Zwicky Transient Facility: Data Processing, Products, and Archive
journal, December 2018

  • Masci, Frank J.; Laher, Russ R.; Rusholme, Ben
  • Publications of the Astronomical Society of the Pacific, Vol. 131, Issue 995
  • DOI: 10.1088/1538-3873/aae8ac

Optical Appearance of the Debris of a Star Disrupted by a Massive Black Hole
journal, November 1997

  • Loeb, Abraham; Ulmer, Andrew
  • The Astrophysical Journal, Vol. 489, Issue 2
  • DOI: 10.1086/304814

emcee : The MCMC Hammer
journal, March 2013

  • Foreman-Mackey, Daniel; Hogg, David W.; Lang, Dustin
  • Publications of the Astronomical Society of the Pacific, Vol. 125, Issue 925
  • DOI: 10.1086/670067

A Unified Model for Tidal Disruption Events
journal, May 2018

  • Dai, Lixin; McKinney, Jonathan C.; Roth, Nathaniel
  • The Astrophysical Journal, Vol. 859, Issue 2
  • DOI: 10.3847/2041-8213/aab429

The X-Ray Through Optical Fluxes and line Strengths of Tidal Disruption Events
journal, August 2016

  • Roth, Nathaniel; Kasen, Daniel; Guillochon, James
  • The Astrophysical Journal, Vol. 827, Issue 1
  • DOI: 10.3847/0004-637X/827/1/3

A radio jet from the optical and x-ray bright stellar tidal disruption flare ASASSN-14li
journal, November 2015


Possible power source of Seyfert galaxies and QSOs
journal, March 1975


Tidal disruptions by rotating black holes: effects of spin and impact parameter
journal, June 2019

  • Gafton, Emanuel; Rosswog, Stephan
  • Monthly Notices of the Royal Astronomical Society, Vol. 487, Issue 4
  • DOI: 10.1093/mnras/stz1530

THE ULTRAVIOLET-BRIGHT, SLOWLY DECLINING TRANSIENT PS1-11af AS A PARTIAL TIDAL DISRUPTION EVENT
journal, December 2013


Discovery and Early Evolution of ASASSN-19bt, the First TDE Detected by TESS
journal, September 2019

  • Holoien, Thomas W. -S.; Vallely, Patrick J.; Auchettl, Katie
  • The Astrophysical Journal, Vol. 883, Issue 2
  • DOI: 10.3847/1538-4357/ab3c66

EEV large-format CCD camera on the WHT ISIS spectrograph
conference, July 1990

  • Jorden, Paul R.
  • Astronomy '90, Tucson AZ, 11-16 Feb 90, SPIE Proceedings
  • DOI: 10.1117/12.19163

A CONTINUUM OF H- TO He-RICH TIDAL DISRUPTION CANDIDATES WITH A PREFERENCE FOR E+A GALAXIES
journal, September 2014


Coevolution (Or Not) of Supermassive Black Holes and Host Galaxies
journal, August 2013


Bowen fluoresence and He II lines in active galaxies and gaseous nebulae
journal, December 1985

  • Netzer, H.; Elitzur, M.; Ferland, G. J.
  • The Astrophysical Journal, Vol. 299
  • DOI: 10.1086/163741

Spectroscopic diagnostics of dust formation and evolution in classical nova ejecta
journal, November 2018


Automated data reduction workflows for astronomy: The ESO Reflex environment
journal, November 2013


THE WISE DETECTION OF AN INFRARED ECHO IN TIDAL DISRUPTION EVENT ASASSN-14li
journal, August 2016


Continuum-fitting the X-Ray Spectra of Tidal Disruption Events
journal, July 2020

  • Wen, Sixiang; Jonker, Peter G.; Stone, Nicholas C.
  • The Astrophysical Journal, Vol. 897, Issue 1
  • DOI: 10.3847/1538-4357/ab9817

Disk Formation Versus disk Accretion—What Powers Tidal Disruption Events?
journal, June 2015


Binospec: A Wide-field Imaging Spectrograph for the MMT
journal, June 2019

  • Fabricant, Daniel; Fata, Robert; Epps, Harland
  • Publications of the Astronomical Society of the Pacific, Vol. 131, Issue 1001
  • DOI: 10.1088/1538-3873/ab1d78

An ultraviolet–optical flare from the tidal disruption of a helium-rich stellar core
journal, May 2012


The Two Micron All Sky Survey (2MASS)
journal, February 2006

  • Skrutskie, M. F.; Cutri, R. M.; Stiening, R.
  • The Astronomical Journal, Vol. 131, Issue 2
  • DOI: 10.1086/498708

ASASSN-14ae: a tidal disruption event at 200 Mpc
journal, October 2014

  • Holoien, T. W. -S.; Prieto, J. L.; Bersier, D.
  • Monthly Notices of the Royal Astronomical Society, Vol. 445, Issue 3
  • DOI: 10.1093/mnras/stu1922

[O iii]/[N ii] as an abundance indicator at high redshift
journal, March 2004


SPRAT: Spectrograph for the Rapid Acquisition of Transients
conference, July 2014

  • Piascik, A. S.; Steele, Iain A.; Bates, Stuart D.
  • SPIE Astronomical Telescopes + Instrumentation, SPIE Proceedings
  • DOI: 10.1117/12.2055117

WISeREP—An Interactive Supernova Data Repository
journal, July 2012

  • Yaron, Ofer; Gal-Yam, Avishay
  • Publications of the Astronomical Society of the Pacific, Vol. 124, Issue 917
  • DOI: 10.1086/666656

Radio Observations of the Tidal Disruption Event XMMSL1 J0740–85
journal, March 2017

  • Alexander, K. D.; Wieringa, M. H.; Berger, E.
  • The Astrophysical Journal, Vol. 837, Issue 2
  • DOI: 10.3847/1538-4357/aa6192

Tidal Disruption Events Prefer Unusual host Galaxies
journal, February 2016


New Physical Insights about Tidal Disruption Events from a Comprehensive Observational Inventory at X-Ray Wavelengths
journal, April 2017

  • Auchettl, Katie; Guillochon, James; Ramirez-Ruiz, Enrico
  • The Astrophysical Journal, Vol. 838, Issue 2
  • DOI: 10.3847/1538-4357/aa633b

Birth of a relativistic outflow in the unusual γ-ray transient Swift J164449.3+573451
journal, August 2011

  • Zauderer, B. A.; Berger, E.; Soderberg, A. M.
  • Nature, Vol. 476, Issue 7361
  • DOI: 10.1038/nature10366

The ultraviolet spectroscopic evolution of the low-luminosity tidal disruption event iPTF16fnl
journal, September 2017

  • Brown, J. S.; Kochanek, C. S.; Holoien, T. W. -S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 473, Issue 1
  • DOI: 10.1093/mnras/stx2372

An empirical relation between sodium absorption and dust extinction: Sodium and dust
journal, October 2012

  • Poznanski, Dovi; Prochaska, J. Xavier; Bloom, Joshua S.
  • Monthly Notices of the Royal Astronomical Society, Vol. 426, Issue 2
  • DOI: 10.1111/j.1365-2966.2012.21796.x

Radio Properties of Tidal Disruption Events
journal, June 2020


MUSE REVEALS A RECENT MERGER IN THE POST-STARBURST HOST GALAXY OF THE TDE ASASSN-14li
journal, October 2016


The Tidal Disruption Event AT 2018hyz II: Light-curve modelling of a partially disrupted star
journal, July 2020

  • Gomez, Sebastian; Nicholl, Matt; Short, Philip
  • Monthly Notices of the Royal Astronomical Society, Vol. 497, Issue 2
  • DOI: 10.1093/mnras/staa2099

The Host Galaxies of Tidal Disruption Events
journal, March 2020


ATLAS: A High-cadence All-sky Survey System
journal, May 2018

  • Tonry, J. L.; Denneau, L.; Heinze, A. N.
  • Publications of the Astronomical Society of the Pacific, Vol. 130, Issue 988
  • DOI: 10.1088/1538-3873/aabadf

The Wide-Field Infrared Survey Explorer (Wise): Mission Description and Initial On-Orbit Performance
journal, November 2010


Improving the full spectrum fitting method: accurate convolution with Gauss–Hermite functions
journal, November 2016

  • Cappellari, Michele
  • Monthly Notices of the Royal Astronomical Society, Vol. 466, Issue 1
  • DOI: 10.1093/mnras/stw3020

An online repository of Swift /XRT light curves of $\vec \gamma$-ray bursts
journal, April 2007


Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies
journal, June 1988