skip to main content
DOE PAGES title logo U.S. Department of Energy
Office of Scientific and Technical Information

Title: Viscoelastic Response of Dispersed Entangled Polymer Melts

Abstract

Any polymer synthesis routes result in molecular weight dispersity DAI, depending on the polymerization mechanism. The lowest dispersity polymers are those made by anionic and atom-transfer radical polymerization, which exhibit relatively narrow distributions DM=g,„1A172 — 1.02-1.04. This small divergence from monodispersity results in significant number of molecules that differ in their molecular weight from the average and their impact on the viscoelastic response remains an open question. Here the effects of low dispersity on stress relaxation and shear viscosity of entangled melts are studied using a coarse-grained model for polyethylene. Polymer melts with chain length dispersity set to follow a Schulz-Zimm distribution of Dm = 1.0 — 1.16 for an entangled polyethylene melt using molecular dynamic simulations. The systems were studied to times up to 800 ,us which is beyond the terminal time. These systems are compared to those with binary and ternary distributions. The stress relaxation functions were extracted from the Green-Kubo relation and from stress-strain relaxation following a uniaxial extension. We find on the entanglement time scale, both the mean squared displacement and the stress relaxation are independent of Dm. The tube diameter and the rubbery plateau for entangled dynamics do not depend on Dm. At longer times,more » the terminal relaxation time decreases as the faster motion of the shorter chains results in constraint release for the longer chains. Probing this low dispersity regime opens the way to evaluate the degree of dispersity that affects mechanical properties.« less

Authors:
 [1];  [2]; ORCiD logo [3]; ORCiD logo [4]; ORCiD logo [1]
  1. Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
  2. U. S. Army Research Lab., Aberdeen, MD (United States)
  3. Univ. of South Carolina, Columbia, SC (United States)
  4. Clemson Univ., SC (United States)
Publication Date:
Research Org.:
Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
Sponsoring Org.:
USDOE National Nuclear Security Administration (NNSA)
OSTI Identifier:
1671805
Report Number(s):
SAND2020-8593J
Journal ID: ISSN 0024-9297; 690045
Grant/Contract Number:  
AC04-94AL85000
Resource Type:
Accepted Manuscript
Journal Name:
Macromolecules
Additional Journal Information:
Journal Volume: 53; Journal Issue: 19; Journal ID: ISSN 0024-9297
Publisher:
American Chemical Society
Country of Publication:
United States
Language:
English
Subject:
37 INORGANIC, ORGANIC, PHYSICAL, AND ANALYTICAL CHEMISTRY

Citation Formats

Peters, Brandon L., Salerno, K. Michael, Ge, Ting, Perahia, Dvora, and Grest, Gary S.. Viscoelastic Response of Dispersed Entangled Polymer Melts. United States: N. p., 2020. Web. https://doi.org/10.1021/acs.macromol.0c01403.
Peters, Brandon L., Salerno, K. Michael, Ge, Ting, Perahia, Dvora, & Grest, Gary S.. Viscoelastic Response of Dispersed Entangled Polymer Melts. United States. https://doi.org/10.1021/acs.macromol.0c01403
Peters, Brandon L., Salerno, K. Michael, Ge, Ting, Perahia, Dvora, and Grest, Gary S.. Thu . "Viscoelastic Response of Dispersed Entangled Polymer Melts". United States. https://doi.org/10.1021/acs.macromol.0c01403. https://www.osti.gov/servlets/purl/1671805.
@article{osti_1671805,
title = {Viscoelastic Response of Dispersed Entangled Polymer Melts},
author = {Peters, Brandon L. and Salerno, K. Michael and Ge, Ting and Perahia, Dvora and Grest, Gary S.},
abstractNote = {Any polymer synthesis routes result in molecular weight dispersity DAI, depending on the polymerization mechanism. The lowest dispersity polymers are those made by anionic and atom-transfer radical polymerization, which exhibit relatively narrow distributions DM=g,„1A172 — 1.02-1.04. This small divergence from monodispersity results in significant number of molecules that differ in their molecular weight from the average and their impact on the viscoelastic response remains an open question. Here the effects of low dispersity on stress relaxation and shear viscosity of entangled melts are studied using a coarse-grained model for polyethylene. Polymer melts with chain length dispersity set to follow a Schulz-Zimm distribution of Dm = 1.0 — 1.16 for an entangled polyethylene melt using molecular dynamic simulations. The systems were studied to times up to 800 ,us which is beyond the terminal time. These systems are compared to those with binary and ternary distributions. The stress relaxation functions were extracted from the Green-Kubo relation and from stress-strain relaxation following a uniaxial extension. We find on the entanglement time scale, both the mean squared displacement and the stress relaxation are independent of Dm. The tube diameter and the rubbery plateau for entangled dynamics do not depend on Dm. At longer times, the terminal relaxation time decreases as the faster motion of the shorter chains results in constraint release for the longer chains. Probing this low dispersity regime opens the way to evaluate the degree of dispersity that affects mechanical properties.},
doi = {10.1021/acs.macromol.0c01403},
journal = {Macromolecules},
number = 19,
volume = 53,
place = {United States},
year = {2020},
month = {10}
}

Journal Article:
Free Publicly Available Full Text
Publisher's Version of Record

Save / Share:

Works referenced in this record:

Atom Transfer Radical Polymerization
journal, September 2001

  • Matyjaszewski, Krzysztof; Xia, Jianhui
  • Chemical Reviews, Vol. 101, Issue 9
  • DOI: 10.1021/cr940534g

Living Free-Radical Polymerization by Reversible Addition−Fragmentation Chain Transfer:  The RAFT Process
journal, August 1998

  • Chiefari, John; Chong, Y. K. (Bill); Ercole, Frances
  • Macromolecules, Vol. 31, Issue 16
  • DOI: 10.1021/ma9804951

Effect of Chain Length Dispersity on the Mobility of Entangled Polymers
journal, August 2018


Effects of polydispersity on linear viscoelasticity in entangled polymer melts
journal, May 1992

  • Wasserman, S. H.; Graessley, W. W.
  • Journal of Rheology, Vol. 36, Issue 4
  • DOI: 10.1122/1.550363

Kinetic theory of polymer melts. 7. Polydispersity effects
journal, November 1986

  • Schieber, Jay D.; Curtiss, Charles F.; Bird, R. Byron
  • Industrial & Engineering Chemistry Fundamentals, Vol. 25, Issue 4
  • DOI: 10.1021/i100024a003

Dynamics of polymers in polydisperse melts
journal, August 1987

  • Doi, M.; Graessley, W. W.; Helfand, E.
  • Macromolecules, Vol. 20, Issue 8
  • DOI: 10.1021/ma00174a035

Self‐consistent theory of polydisperse entangled polymers: Linear viscoelasticity of binary blends
journal, October 1988

  • Rubinstein, Michael; Colby, Ralph H.
  • The Journal of Chemical Physics, Vol. 89, Issue 8
  • DOI: 10.1063/1.455620

Molecular weight polydispersity effects on the viscoelasticity of entangled linear polymers
journal, April 1991


Relating the shear‐thinning curve to the molecular weight distribution in linear polymer melts
journal, March 1996


Relaxation Dynamics in Mixtures of Long and Short Chains:  Tube Dilation and Impeded Curvilinear Diffusion
journal, July 2003

  • Wang, Shanfeng; Wang, Shi-Qing; Halasa, A.
  • Macromolecules, Vol. 36, Issue 14
  • DOI: 10.1021/ma0210426

Rheological models based on the double reptation mixing rule: The effects of a polydisperse environment
journal, July 2000

  • Léonardi, Frédéric; Majesté, Jean-Charles; Allal, Ahmed
  • Journal of Rheology, Vol. 44, Issue 4
  • DOI: 10.1122/1.551108

Rheology of polydisperse polymers: relationship between intermolecular interactions and molecular weight distribution
journal, January 1993

  • Cassagnau, P.; Montfort, J. P.; Marin, G.
  • Rheologica Acta, Vol. 32, Issue 2
  • DOI: 10.1007/BF00366679

Statics and Dynamics of Bidisperse Polymer Melts:  A Monte Carlo Study of the Bond-Fluctuation Model
journal, June 1998

  • Baschnagel, J.; Paul, W.; Tries, V.
  • Macromolecules, Vol. 31, Issue 12
  • DOI: 10.1021/ma9718863

Comparison among Slip-Link Simulations of Bidisperse Linear Polymer Melts
journal, November 2008

  • Masubuchi, Yuichi; Watanabe, Hiroshi; Ianniruberto, Giovanni
  • Macromolecules, Vol. 41, Issue 21
  • DOI: 10.1021/ma800954q

Molecular dynamics study of diffusion in bidisperse polymer melts
journal, February 2000

  • Barsky, Sandra
  • The Journal of Chemical Physics, Vol. 112, Issue 7
  • DOI: 10.1063/1.480925

Coarse grained model of diffusion in entangled bidisperse polymer melts
journal, October 2007

  • Picu, R. C.; Rakshit, A.
  • The Journal of Chemical Physics, Vol. 127, Issue 14
  • DOI: 10.1063/1.2795728

A full-chain constitutive model for bidisperse blends of linear polymers
journal, July 2012

  • Read, D. J.; Jagannathan, K.; Sukumaran, S. K.
  • Journal of Rheology, Vol. 56, Issue 4
  • DOI: 10.1122/1.4707948

Atomistic Molecular Dynamics Simulation of Polydisperse Linear Polyethylene Melts
journal, November 1998

  • Harmandaris, Vagelis A.; Mavrantzas, Vlasis G.; Theodorou, Doros N.
  • Macromolecules, Vol. 31, Issue 22
  • DOI: 10.1021/ma980698p

End-Bridging Monte Carlo:  A Fast Algorithm for Atomistic Simulation of Condensed Phases of Long Polymer Chains
journal, July 1999

  • Mavrantzas, Vlasis G.; Boone, Travis D.; Zervopoulou, Evangelia
  • Macromolecules, Vol. 32, Issue 15
  • DOI: 10.1021/ma981745g

Variable Connectivity Method for the Atomistic Monte Carlo Simulation of Polydisperse Polymer Melts
journal, October 1995

  • Pant, P. V. Krishna; Theodorou, Doros N.
  • Macromolecules, Vol. 28, Issue 21
  • DOI: 10.1021/ma00125a027

Effects of polydispersity on confined homopolymer melts: A Monte Carlo study
journal, December 2014

  • Rorrer, Nicholas A.; Dorgan, John R.
  • The Journal of Chemical Physics, Vol. 141, Issue 21
  • DOI: 10.1063/1.4902352

Finding the Missing Physics: Mapping Polydispersity into Lattice-Based Simulations
journal, April 2014

  • Rorrer, Nicholas A.; Dorgan, John R.
  • Macromolecules, Vol. 47, Issue 9
  • DOI: 10.1021/ma5001207

Molecular Scale Simulation of Homopolymer Wall Slip
journal, April 2013


Molecular-scale simulation of cross-flow migration in polymer melts
journal, November 2014


Influence of molecular-weight polydispersity on the glass transition of polymers
journal, January 2016


Resolving Dynamic Properties of Polymers through Coarse-Grained Computational Studies
journal, February 2016


Dynamics in entangled polyethylene melts
journal, October 2016

  • Salerno, K. Michael; Agrawal, Anupriya; Peters, Brandon L.
  • The European Physical Journal Special Topics, Vol. 225, Issue 8-9
  • DOI: 10.1140/epjst/e2016-60142-7

Coarse-Grained Modeling of Polyethylene Melts: Effect on Dynamics
journal, May 2017

  • Peters, Brandon L.; Salerno, K. Michael; Agrawal, Anupriya
  • Journal of Chemical Theory and Computation, Vol. 13, Issue 6
  • DOI: 10.1021/acs.jctc.7b00241

The Scattering of Light and the Radial Distribution Function of High Polymer Solutions
journal, December 1948

  • Zimm, Bruno H.
  • The Journal of Chemical Physics, Vol. 16, Issue 12
  • DOI: 10.1063/1.1746738

Persistence Length, End-to-End Distance, and Structure of Coarse-Grained Polymers
journal, March 2018

  • Salerno, K. Michael; Bernstein, Noam
  • Journal of Chemical Theory and Computation, Vol. 14, Issue 4
  • DOI: 10.1021/acs.jctc.7b01229

Uncrossability constraints in mesoscopic polymer melt simulations: Non-Rouse behavior of C120H242
journal, August 2001

  • Padding, J. T.; Briels, W. J.
  • The Journal of Chemical Physics, Vol. 115, Issue 6
  • DOI: 10.1063/1.1385162

Time and length scales of polymer melts studied by coarse-grained molecular dynamics simulations
journal, July 2002

  • Padding, J. T.; Briels, W. J.
  • The Journal of Chemical Physics, Vol. 117, Issue 2
  • DOI: 10.1063/1.1481859

Optimized intermolecular potential functions for liquid hydrocarbons
journal, October 1984

  • Jorgensen, William L.; Madura, Jeffry D.; Swenson, Carol J.
  • Journal of the American Chemical Society, Vol. 106, Issue 22
  • DOI: 10.1021/ja00334a030

Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids
journal, January 1996

  • Jorgensen, William L.; Maxwell, David S.; Tirado-Rives, Julian
  • Journal of the American Chemical Society, Vol. 118, Issue 45
  • DOI: 10.1021/ja9621760

Optimization of the OPLS-AA Force Field for Long Hydrocarbons
journal, March 2012

  • Siu, Shirley W. I.; Pluhackova, Kristyna; Böckmann, Rainer A.
  • Journal of Chemical Theory and Computation, Vol. 8, Issue 4
  • DOI: 10.1021/ct200908r

Connection between Polymer Molecular Weight, Density, Chain Dimensions, and Melt Viscoelastic Properties
journal, August 1994

  • Fetters, L. J.; Lohse, D. J.; Richter, D.
  • Macromolecules, Vol. 27, Issue 17
  • DOI: 10.1021/ma00095a001

Packing Length Influence in Linear Polymer Melts on the Entanglement, Critical, and Reptation Molecular Weights
journal, October 1999

  • Fetters, Lewis J.; Lohse, David J.; Milner, Scott T.
  • Macromolecules, Vol. 32, Issue 20
  • DOI: 10.1021/ma990620o

Rheology and reptation of linear polymers. Ultrahigh molecular weight chain dynamics in the melt
journal, May 2004

  • Vega, J. F.; Rastogi, S.; Peters, G. W. M.
  • Journal of Rheology, Vol. 48, Issue 3
  • DOI: 10.1122/1.1718367

Fast Parallel Algorithms for Short-Range Molecular Dynamics
journal, March 1995


Equilibration of long chain polymer melts in computer simulations
journal, December 2003

  • Auhl, Rolf; Everaers, Ralf; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 119, Issue 24
  • DOI: 10.1063/1.1628670

Why are coarse-grained force fields too fast? A look at dynamics of four coarse-grained polymers
journal, January 2011

  • Depa, Praveen; Chen, Chunxia; Maranas, Janna K.
  • The Journal of Chemical Physics, Vol. 134, Issue 1
  • DOI: 10.1063/1.3513365

Theoretical reconstruction of realistic dynamics of highly coarse-grained cis -1,4-polybutadiene melts
journal, March 2013

  • Lyubimov, I. Y.; Guenza, M. G.
  • The Journal of Chemical Physics, Vol. 138, Issue 12
  • DOI: 10.1063/1.4792367

Dynamics of Polystyrene Melts through Hierarchical Multiscale Simulations
journal, February 2009

  • Harmandaris, Vagelis A.; Kremer, Kurt
  • Macromolecules, Vol. 42, Issue 3
  • DOI: 10.1021/ma8018624

Multiscale modeling of soft matter: scaling of dynamics
journal, January 2011

  • Fritz, Dominik; Koschke, Konstantin; Harmandaris, Vagelis A.
  • Physical Chemistry Chemical Physics, Vol. 13, Issue 22
  • DOI: 10.1039/c1cp20247b

Static and dynamic properties of large polymer melts in equilibrium
journal, April 2016

  • Hsu, Hsiao-Ping; Kremer, Kurt
  • The Journal of Chemical Physics, Vol. 144, Issue 15
  • DOI: 10.1063/1.4946033

Dynamics of entangled linear polymer melts:  A molecular‐dynamics simulation
journal, April 1990

  • Kremer, Kurt; Grest, Gary S.
  • The Journal of Chemical Physics, Vol. 92, Issue 8
  • DOI: 10.1063/1.458541

Canonical dynamics: Equilibrium phase-space distributions
journal, March 1985


Modified nonequilibrium molecular dynamics for fluid flows with energy conservation
journal, April 1997

  • Tuckerman, Mark E.; Mundy, Christopher J.; Balasubramanian, Sundaram
  • The Journal of Chemical Physics, Vol. 106, Issue 13
  • DOI: 10.1063/1.473582

Note: Determine entanglement length through monomer mean-square displacement
journal, January 2017

  • Hou, Ji-Xuan
  • The Journal of Chemical Physics, Vol. 146, Issue 2
  • DOI: 10.1063/1.4973871